
signalling is important for timely SIN
resetting (Figure 2). Globally, their
model proposes that etd1p is required
for SIN activation, but that the active
SIN in its turn inactivates etd1p,
perhaps by promoting its degradation.
During anaphase, the balance initially
favours etd1p, and it promotes an
increase in SIN activity. At the time
of septum formation when etd1
expression declines [6], the active
SIN gains the upper hand, and etd1p
activity declines. As etd1p is required
for SIN activity, SIN signalling from the
nSPB is auto-extinguishing (Figure 2).
The APC/C subunit nuc2p has been
implicated in resetting the SIN [12]; it
will be of interest to determine whether
it is involved in the degradation of
etd1p.

The new paper [3] shows that
cells expressing elevated levels of
GFP–etd1p retain some cdc7p on
the nSPB after cleavage, consistent
with a delay in resetting the SIN.
Filming of dikaryons suggests that
SIN asymmetry is required for the
differential changes in etd1p level
that are observed in the daughter
cells. The mechanism whereby
closure of the contractile ring is
coupled to SIN inactivation remains to
be elucidated. This study does not
address what establishes the initial SIN
asymmetry in anaphase B, though cdk
inactivation is clearly important [13,14].
In SIN mutants, the GAP remains
asymmetric [15,16], suggesting that
the establishment of SIN protein
asymmetry is mediated via the GAP,
though this remains conjectural.

In summary, this paper [3] sheds new
light on SIN regulation and builds upon
the earlier proposition [6] that etd1p
degradation could be coupled to SIN

inactivation, incorporating a role for
the mitotic asymmetry of the SIN
proteins. Understanding how the
mutual regulation of etd1p and the
SIN works will be of great interest.
We speculate that if etd1p activates
the SIN, then perhaps the contractile
ring-dependent medial pool of
GFP–etd1p observed in early mitosis
[6] contributes to the SIN’s early mitotic
activity in contractile ring formation.

Finally, we note that the observation
that the progeny of a single division
differ with regard to their treatment
of GFP–etd1p provides another
instance of an asymmetric event in
the ‘symmetric’ fission yeast cell, which
include the regulation of mating-type
switching [17], maturation of spindle
pole bodies over two cell cycles
[4], and the growth pattern and
segregation of cell polarity factors
[18]. It will be of interest to determine
whether the SPB inherited by a cell
affects any other aspects of its biology.

References
1. Krapp, A., and Simanis, V. (2008). An overview

of the fission yeast septation initiation network
(SIN). Biochem. Soc. Trans. 36, 411–415.

2. Roberts-Galbraith, R.H., and Gould, K.L. (2008).
Stepping into the ring: the SIN takes on
contractile ring assembly. Genes Dev. 22,
3082–3088.

3. Garcia-Cortes, J.C., and McCollum, D. (2009).
Proper timing of cytokinesis is regulated by
Schizosaccharomyces pombe Etd1. J. Cell
Biol. 186, 739–753.

4. Grallert, A., Krapp, A., Bagley, S., Simanis, V.,
and Hagan, I.M. (2004). Recruitment of NIMA
kinase shows that maturation of the S. pombe
spindle-pole body occurs over consecutive cell
cycles and reveals a role for NIMA in
modulating SIN activity. Genes Dev. 18,
1007–1021.

5. Simanis, V. (2003). Events at the end of mitosis
in the budding and fission yeasts. J. Cell Sci.
116, 4263–4275.

6. Daga, R.R., Lahoz, A., Munoz, M.J., Moreno, S.,
and Jimenez, J. (2005). Etd1p is a novel protein
that links the SIN cascade with cytokinesis.
EMBO J. 24, 2436–2446.

7. Molk, J.N., Schuyler, S.C., Liu, J.Y., Evans, J.G.,
Salmon, E.D., Pellman, D., and Bloom, K.
(2004). The differential roles of budding
yeast Tem1p, Cdc15p, and Bub2p protein
dynamics in mitotic exit. Mol. Biol. Cell 15,
1519–1532.

8. Caydasi, A.K., and Pereira, G. (2009).
Spindle alignment regulates the dynamic
association of checkpoint proteins with
yeast spindle pole bodies. Dev. Cell 16,
146–156.

9. Monje-Casas, F., and Amon, A. (2009). Cell
polarity determinants establish asymmetry in
MEN signaling. Dev. Cell 16, 132–145.

10. Cooper, J.A., and Nelson, S.A. (2006).
Checkpoint control of mitotic exit–do
budding yeast mind the GAP? J. Cell Biol.
172, 331–333.

11. Okazaki, K., and Niwa, O. (2008). Dikaryotic
cell division of the fission yeast
Schizosaccharomyces pombe. Biosci.
Biotechnol. Biochem. 72, 1531–1538.

12. Chew, T.G., and Balasubramanian, M.K. (2008).
Nuc2p, a subunit of the anaphase-promoting
complex, inhibits septation initiation network
following cytokinesis in fission yeast. PLoS
Genet. 4, e17.

13. Dischinger, S., Krapp, A., Xie, L., Paulson, J.R.,
and Simanis, V. (2008). Chemical genetic
analysis of the regulatory role of Cdc2p in the
S. pombe septation initiation network. J. Cell
Sci. 121, 843–853.

14. Guertin, D.A., Chang, L., Irshad, F., Gould, K.L.,
and McCollum, D. (2000). The role of the sid1p
kinase and cdc14p in regulating the onset of
cytokinesis in fission yeast. EMBO J. 19,
1803–1815.

15. Li, C., Furge, K.A., Cheng, Q.C., and
Albright, C.F. (2000). Byr4 localizes to
spindle-pole bodies in a cell cycle-regulated
manner to control Cdc7 localization and
septation in fission yeast. J. Biol. Chem. 275,
14381–14387.

16. Sohrmann, M., Schmidt, S., Hagan, I., and
Simanis, V. (1998). Asymmetric segregation on
spindle poles of the Schizosaccharomyces
pombe septum-inducing protein kinase Cdc7p.
Genes Dev. 12, 84–94.

17. Egel, R. (2005). Fission yeast mating-type
switching: programmed damage and repair.
DNA Rep. 4, 525–536.

18. Martin, S.G. (2009). Microtubule-dependent cell
morphogenesis in the fission yeast. Trends Cell
Biol. 19, 447–454.

EPFL SV ISREC UPSIM, SV2.1830, Station
19, CH-1015 Lausanne, Switzerland.
*E-mail: viesturs.simanis@epfl.ch

DOI: 10.1016/j.cub.2009.10.012

Current Biology Vol 19 No 22
R1042
Circadian Clocks: Evolution in the
Shadows

As scientists, we strive for highly controlled conditions. The real world,
however, is noisy. Complex networks are a coping mechanism for an erratic
environment.
Martha Merrow*
and Marc F.P.M. Maas

The field of genetics has elaborated
a multitude of partially defined complex
networks. An excellent example is the
molecular mechanism driving the
circadian biological clock (Figure 1).
The clock is a fundamental process
that permeates biology at all levels,
creating a temporal structure that
serves to anticipate what is needed by
the cell and the organism, and when.
Originally characterized as a simple,
single feedback loop, the molecular
circadian network is presently
described as a collection of
transcription factors that form
interlocked loops [1]. In an attempt to
understand the inherent complexity of
the circadian clock, a group of systems
biologists, as reported in this issue of
Current Biology, has applied (relatively)
unbiased iterative modeling to the
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problem of network evolution [2]. For
their simulations, Troein et al. [2] fed the
model alternatively with either smooth,
square-wave or noisy (i.e., realistic)
information to evoke daily light cycles.
They asked what kinds of networks
would arise and they discovered that
features of the light environment that
derive from real weather as well as
day length promote complexity.

The molecular clock has been largely
defined using free-running,
self-sustained oscillation as an assay
despite the fact that the clock is always
entrained or synchronized in nature
to cycling conditions. Throughout
evolution, the clock has been shaped
by zeitgeber (from the German for
‘time-giver’) cycles that are repetitive
with respect to day and season. Light
is generally considered the most
importantzeitgeber [3], and it is certainly
the best characterized for its effects on
circadian clocks, albeit most often in the
form of a discrete light pulse.

An important aspect of the light
environment, however, is day length,
which regulates, for example,
reproduction via the circadian clock [4].
Photoperiod can be predicted to the
minute for centuries past and to come;
however, over the day, the light
environment can change from one
minute to the next (for example, via
cloud cover; Figure 2). At least for
plants and animals, an indication
of the mechanism of biological
photoperiodism is the expression
of key clock genes around dawn and
dusk, irrespective of the day length
[5,6]. The induction of an RNA species
at dawn could be caused by a simple
light induction, but for gene expression
to anticipate dusk in different
photoperiods demands a sophisticated
timing mechanism. The function of the
circadian system is to provide a reliable
temporal structure (hence the word
‘clock’) according to photoperiod and
despite a light environment that can
change from day to day or even within
a day. Indeed, earlier modeling
experiments have demonstrated that
noise can serve a stabilizing function in
a network of feedback loops [7].

The experiment that Troien et al. [2]
performed began with an unspecified
network of four genes. Interaction
between any two components or even
feedback on self was allowed; delays
were included as parameters that could
be modified, a feature that would allow
some in silico post-transcriptional
regulation, thought to be necessary to
achieve a 24 hour oscillation. Any of the
genes could be regulated by a light
signal, although one component was
specified as the dawn component and
the other as the dusk one; they had
to be expressed in specified time
windows relative to the photoperiod.
Simulations were run ‘under
entrainment’ in conjunction with
various selection procedures (fitness
testing and pruning to keep the number
of feedbacks somewhat constrained).
The resulting networks increased in
interconnectedness as the entrainment
moved from single photoperiod to
multiple photoperiods, but only the
combination of various photoperiods
together with a realistic, noisy light
environment — actually derived from
a year of recordings in the Harvard
Forest — yielded a highly
interconnected network, showing
that complexity is an outcome of real
weather.

Many interesting implications flow
from this work. One of these concerns
how light is taken up by the circadian
clock. Both the timing and amount
of light administered can change
the phasing of clock-regulated
processes [8]. Hence, understanding
how light acts on the clock is as
important as understanding the clock
mechanism itself. The input pathway
is the first step in the process and,
although a number of photoreceptor
molecules are known for plants,
animals and fungi [9–13], signal
transduction leading from outer to
inner worlds is poorly filled in. For
instance, while it was once thought
that light acted by acutely inducing
clock gene RNAs [14], it was later
demonstrated that the RNAs and
translation of their proteins are
differentially regulated by light in
entrainment [15]. Recent work using
mice suggests that it is primarily the
chronic rather than acute effects of
light that are determining entrained
phase (when in the day an individual is
active) [16]. This observation should
change our concepts of entrainment,
which have previously been built on the
assumption of rapid, discrete phase
shifts. Modeling (perhaps even the
models derived here) could be used
to predict key features of light signaling
to the clock network that meet both
the demands and constraints of the
biological system and the reality of
the physical environment.

Second, the modeling suggests that
a non-noisy light environment fails to
stimulate development of a network
that shows a self-sustained, oscillating
rhythm in constant conditions. This
feature is often considered to be
a hallmark of a circadian clock. One
problem with equating free running
rhythms with a clock is that a failure
to find rhythmicity could represent an
experimental failure rather than a bona
fide absence of a biological clock. In
support of this line of reasoning is the
systematic circadian entrainment that
can be demonstrated in some mutants
that do not show a robust free running
rhythm [17]. The model that Troien et al.
[2] generated with simple, square wave
photoperiods as light cycles manages
to show circadian entrainment, as
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Figure 1. Eukaryotic circadian clock
networks.

Eukaryotic circadian clock networks, as
defined by genetic studies, form regulatory
loops with complex regulation. Some of the
best studied clock networks include those
controlling circadian rhythms in Arabidopsis
thaliana (A), mice (B), and the fungus,
Neurospora crassa (C). Arrows indicate posi-
tive effects on expression levels (suggesting
transcriptional activation); crossbars indicate
negative effects (suggesting transcriptional
repression). In addition, each system poten-
tially utilizes multiple light input pathways
working at various nodes of the network.
Post-translational modifications are com-
mon, including phosphorylation, acetylation
and sumoylation [18]. Sub-cellular localiza-
tion of clock proteins is also of key impor-
tance [19,20], with rapid shuttling between
nucleus and cytoplasm in some cases.
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Figure 2. Environmental variability.

In many parts of the world, environmental light can change, practically from one minute to the
next, due to cloud cover. The scene here shows pictures taken within several minutes on a day
in March 2009 in the Netherlands, illustrating the noisy light environment.
demonstrated by the expression of
specified activities at dawn and dusk in
different ‘seasons’, despite failure to
show robust free running rhythm. Back
in the biological realm, there could be
a lot of clocks out there that remain
unexplored only for lack of a self-
sustained rhythm, despite exhibiting
entrainment as a clock should.

Third, one might predict that related
organisms evolved in different climates
would evolve higher or lower
complexity in their clock networks.
Weather can be remarkably stable or
highly unpredictable depending on
proximity to coastlines, latitude, etc.
A systematic and comparative
investigation of sister species taken
from both types of climate should
reflect the principles elucidated by the
modeling experiment. The model that
was selected via the noisy environment
is more complex and it is also more
successful as selected in the context
of the realistic zeitgeber cycle. Thus,
experiments should reveal differences
in actual clock networks evolved in
different sorts of climates. For
instance, the period of the free running
rhythm at different incubation
temperatures or qualities of the
entrained phase might be more or
less stable, reflecting compensation
mechanisms of the metabolic networks
to noise. The model also predicts that
self-sustained rhythms would be less
common in organisms from less noisy
environments.

Finally, in the era of systems biology
and genetics, the phenomenon of
complex regulatory networks, similar
to what has been discussed here, is not
unusual. The principles that apply to an
evolving circadian network might also
apply to other networks, such as the
cell cycle or developmental pathways.
The prediction is that complexity
contributes to compensation
mechanisms: namely, it contributes
robustness against noise from the inner
and outer worlds. This generalization
might be applied towards
understanding functional attributes
of (non-clock) networks.

‘‘If you don’t like the weather, just
wait a few minutes’’ is a well-known
adage to New Englanders. We (the
authors) live in the Netherlands,
where they say ‘‘Kermis in de hel’’
(it’s a carnival in hell), referring to
occasionally unpredictable and
simultaneously conflicting weather
conditions. In much of the world — at
least in the temperate zones — the
natural zeitgebers are rife with
interference due to weather.
Complexity in genetic networks will
serve to preserve biological function
in the face of reality, which is erratic.
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Summary

The 24-hour rhythms of the circadian clock [1] allow an

organism to anticipate daily environmental cycles, giving
it a competitive advantage [2, 3]. Although clock compo-

nents show little protein sequence homology across phyla,
multiple feedback loops and light inputs are universal

features of clock networks [4, 5]. Why have circadian
systems evolved such a complex structure? All biological

clocks entrain a set of regulatory genes to the environmental
cycle, in order to correctly time the expression of many

downstream processes. Thus the question becomes: What
aspects of the environment, and of the desired downstream

regulation, are demanding the observed complexity? To
answer this, we have evolved gene regulatory networks

in silico, selecting for networks that correctly predict partic-

ular phases of the day under light/dark cycles. Gradually
increasing the realism of the environmental cycles, we

have tested the networks for the minimal characteristics of
clocks observed in nature: oscillation under constant condi-

tions, entrainment to light signals, and the presence of
multiple feedback loops and light inputs. Realistic circadian

gene networks are found to require a nontrivial combination
of conditions, with seasonal differences in photoperiod as

a necessary but not sufficient component.

Results and Discussion

Evolving Clock Networks

Starting from randomly connected networks of genes
(Figure 1A), we have used a genetic algorithm to create clock
networks in which one gene is designated to be expressed
just after dawn and another just before dusk. This pattern
exemplifies the well-characterized rhythmic profiles of core
circadian clock genes, such as Per1 and Per2 in the mamma-
lian suprachiasmatic nucleus or PRR9 and GI in Arabidopsis
[1]. A fitness function measures how well the network times
expression of the dawn and dusk genes. Our approach differs
from earlier work, which sought specifically for oscillations in
constant conditions [6–8]. These works demonstrated that it
is possible to evolve simple networks that oscillate and can
be entrained to a light/dark cycle. We now use this technique

*Correspondence: andrew.millar@ed.ac.uk
4These authors contributed equally to this work
to address the fundamental question of which properties of
the environment are required to evolve the complex circadian
networks found in nature.

To probe the role of the environmental input, we evolved
networks under a range of light conditions. The most basic
was alternating 12 hours of light and darkness (LD 12:12),
and we extended this in two directions: multiple photoperiods
and noise in the timing of the light signal. The former mimics
seasonal differences, hypothesized to be important for the
emergence of complex clocks [9], whereas the latter repre-
sents weather and other stochastic effects on the system.
The effects of molecular noise on circadian clocks have been
studied extensively [10–14], showing that simple one-loop
oscillators can be robust to molecular noise, given the correct
parameter choices. In this study, we focused on the effect of
environmental noise on circadian clock evolution. To compare
the idealized scenarios with natural conditions, we also
evolved networks against a year-long time series of environ-
mental radiometry data from Harvard Forest [15], where
dawn and dusk change gradually and the light intensity fluctu-
ates with the weather.

The networks were modeled as delay differential equations
with parameters for light activation and for the signs,
strengths, and timescales of gene-gene interactions. The
choice of delays over mass action kinetics greatly reduces
the number of parameters without being incompatible with
biological systems [16–19]. For computational tractability, we
limited the networks to no more than four genes. This limit
was selected to allow a wide range of interlocking loop struc-
tures, comparable to the complexity of mechanistic circadian
clock models. Over 108 network architectures were possible
with four genes.

Network Analysis
The goal of using a genetic algorithm to optimize the topology
and parameters was to create an ensemble of realistic
networks. By strongly selecting for correct dawn and dusk
gene expression, we removed most of the generated networks
from further analysis. The absolute fitness and fitness distribu-
tion of the solutions varied significantly among scenarios,
reflecting the challenges of the different environments and
making it inappropriate to apply a single fitness threshold
across scenarios. The 50 best performing solutions, out of
5,000 evolved, were therefore analyzed for each scenario. In
general, biological networks might contain interactions that
slightly increase fitness without being integral to function, so
for the analysis of network structure, we exposed the func-
tional network cores by iteratively removing the least impor-
tant regulatory interaction or light input, stopping when the
fitness would drop below 95% of its original value. The cores
of the best performing networks are shown in Figures 1B–1F.
For the single-photoperiod scenarios, the networks shown
are representative of the 50 best solutions. What has evolved
is a simple light-driven on/off switch for the dawn gene—an
incoherent feed-forward loop with light as its input—with an
additional delay for the dusk gene.

Figure 2 gives a summary of the evolved network structures
and any sustained circadian oscillations. The simplest LD

mailto:andrew.millar@ed.ac.uk
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Figure 1. The Network Model

(A) The general form of the four-gene networks that we

considered as candidates for generating circadian rhythms.

Gene regulatory interactions may be positive, negative, or

absent, and genes may be activated by light.

(B–F) The highest scoring network for five scenarios: (B) one

photoperiod, (C) one photoperiod with noise, (D) multiple

photoperiods, (E) multiple photoperiods with noise, and (F)

one year of radiometry data. Gene interactions are shown

with signs and delay times, and yellow suns denote light-acti-

vated expression. The designated dawn- and dusk-tracking

genes are marked; the other two genes are interchangeable,

so (B) and (C) are equivalent architectures. For both single-

photoperiod scenarios (B and C), the networks shown repre-

sent the architecture of about 80% of the 50 best solutions

(data not shown). The other 20% were functionally very

similar, only replacing the positive regulation with a double

negative. For multiple photoperiods (D), about 30% of the

solutions looked like the one shown, whereas the last two

scenarios did not use any one architecture for more than

three of the solutions. The functional network cores were

exposed by pruning of unimportant interactions (see text).
12:12 conditions only selected for delayed light responses,
never oscillators, regardless of whether noise was added to
the input. Extending the basic fitness function to multiple
photoperiods had relatively little effect. The networks evolved
few or no feedback loops, and circadian oscillations remained
unlikely. In this scenario alone, we saw evidence of a tradeoff
between light inputs and feedback loops, showing that under
some circumstances, additional inputs are an alternative to
increased structural complexity. However, combining multiple
photoperiods with environmental noise eliminated that alter-
native strategy. Instead, the addition of noise led to a sharp
increase in the number of feedback loops and in the probability
of obtaining a circadian clock. Strikingly, networks faced with
real environmental variations (Figure 3) evolved even more
loops and light inputs and were most likely to exhibit circadian
oscillations. Only in this scenario was the light level noisy

A

B C

Figure 2. Complexity in Clock Networks Evolved under Different Environ-

mental Input

The distribution of the number of feedback loops (A) and light inputs (B) in

the functional cores of the top 50 networks from each scenario and the frac-

tion of the networks that exhibit circadian oscillations only in constant light,

darkness, or both (C). Increasingly realistic conditions led to more feedback

loops, light inputs, and oscillations. The large numbers of light inputs

selected under multiple photoperiods are discussed in the text.
during the day. Thus noise in the duration and level of the en-
training light input signal appeared to favor greater complexity
in the networks that timed gene expression.

Conclusions

A hallmark of circadian regulation is the ability to robustly
adjust to different photoperiods despite unpredictable varia-
tions in temperature, light intensity, and other environmental
parameters. By evolving systems in silico, we have explored
the interactions between functional requirements on the timing
of gene expression and robustness to noise in order to identify
factors that can explain the ubiquity of multiloop circadian
clocks. We have shown that seasonally changing photope-
riods alone are insufficient to select for network complexity
in a circadian system that can anticipate environmental transi-
tions. However, when coupled with environmental noise,
varying photoperiod strongly selects for complexity and gives
rise to circadian clocks with multiple feedback loops and
multiple light inputs, just as observed in nature.

Experimental Procedures

Network Model

The networks that we evolved are illustrated in Figure 1A. Transcription can

be light activated, and genes might activate or repress the transcription of

themselves and others. Posttranscriptional processes (including transla-

tion) give a discrete time delay of between 15 min and 14 hr. Following the

time-averaged statistical treatment of Shea and Ackers [20], we modeled

the system by four delay differential equations, each taking the form

dGi

dt
= Si

Bi + QLioiL +
P4
j = 1

aijoij

�Gj

�
t 2 Tj

�
kij

�2

1 + Bi + QLioiL +
P4
j = 1

oij

�Gj

�
t 2 Tj

�
kij

�2
2 DiGiðtÞ,

where Gi (t) is the level of gene i at time t, Si its maximum transcription rate, Bi

its basal expression level, and Di its decay rate. Gene interactions are

defined by the parameters oij, aij e {0,1}. When oij = 1, there is repression

(aij = 0) or activation (aij = 1) of gene i by gene j, with strength kij and time

delay Tj. Similarly, if oiL = 1, then light activates gene i with strength Li

when the entrainment signal Q > 0. The Hill coefficients for gene-gene inter-

actions are fixed at 2. This model of a genetic network is highly simplified but

nonetheless captures a wide range of network dynamics.

Fitness Function

Given parameter values and the input signal Q(t), the Gi are determined as

functions of time. The fitness score is based on the expression of one
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Figure 3. Network Dynamics with Real Environmental Input

Examples of network dynamics for the network of Figure 1F.

(A) A small part of the Harvard Forest radiometry data that the

network was evolved against, and the corresponding gene expres-

sion time course, normalized to unit maximum. Periods of darkness

are represented by gray shading. The target expression windows

are indicated by red and green boxes for the dawn and dusk gene,

respectively. The gene traces are plotted in the same colors as in

Figure 1, with the parts matching the target expression windows

shaded in red and green. Time t = 0 is midnight, not dawn, because

there is no well-defined zeitgeber period and phase.

(B–D) The day length varies with the season between about 9 and

15 hr, but the network can be entrained to light/dark (LD) cycles

with a wider range of photoperiods: LD 6:18 (B), LD 12:12 (C), and

LD 18:6 (D). In (B)–(D), t = 0 is dawn.
gene in a 3 hr time window after dawn and of another gene in a similar

window before dusk. The fitness for a single simulated day is then

f 2 1f

 R l + 3

l
G1dtR 24

0
G1dt

!2 1

+

 R d

d 2 3
G2dtR 24

0
G2dt

!2 1

+ 0:01
X2

i = 1

 
min

 R 24

0
Gidt

1000
, 1

!!2 1

+ 0:001

 X
i, j

oij +
X

i

oiL

!2 1

,

normalized such that 0 % f % 1. The first two terms describe the expression

of the dawn and dusk genes in the time windows, relative to their totals,

whereas the third term discourages very low expression levels. The last

term is a small penalty on superfluous connections and light inputs, which

mostly affects the simplest scenarios where the fitness differences between

solutions are small. Without this term, feedback loops appeared in many

networks even for the single-photoperiod scenarios, where they were not

required for near perfect scores.

Simulations

To evaluate the fitness function for a given parameter set and light input

signal, we implemented a delay differential equation solver in C++ using

a fourth-order ordinary differential equation solver from the GNU Scientific

Library (GSL) [21]. Hermite interpolation of the values and derivatives of

the variables at the time points visited by the variable step-length ordinary

differential equation (ODE) solver were used to provide system history for

the delay terms and to evaluate the integrals of Gi. Each parameter set

was thus always accompanied by its recent history, including current vari-

able values. Simulations proceeded one day at a time, failing (reporting

negative fitness) if more than 104 time steps were needed. Following any

change, the system was converged toward a limit cycle for up to 20 days

of identical light input, terminating early if end-of-day state or fitness score

converged to within a 1024 relative difference between several consecutive

days. As a fallback, the worst fitness score of the last 15 days was reported.

Multiple Photoperiods and Noise

For multiphotoperiod scenarios, we used nine photoperiods between LD

6:18 and LD 18:6. The state was converged (as described above) following

every photoperiod change. In scenarios with noise, the system ran for

24 days with dusk at nominal dusk 6 2 hr (flat distribution). The total fitness

was the harmonic mean over the individual days. In the environmental data

scenario, the system was converged against the first day of data, then simu-

lated for a further 365 days. The input signal came from Harvard Forest data

set HF102 (available at http://harvardforest.fas.harvard.edu/), specifically

the hourly measurements of total incoming radiation for the year 2000. An

arbitrary transformation was needed to give a level near 0 at night and satu-

rated at 1 on sunny days. We used Q = 0.5tanh(x/30 2 2.5) + 0.5 and inter-

polated between data points by a nonovershooting cubic spline (Figure 3).

Nominal dawn and dusk at Harvard Forest, needed for the fitness scores,

were computed using the date_sun_info function of the PHP programming

language.

Genetic Algorithm

To evolve the networks, we used a real-coded genetic algorithm [22]. Our

particular algorithm is described in detail in the Supplemental Data available
online, and we give a brief summary here. In each generation, the bottom

tenth of the individuals in a population of 50 parameter sets were replaced

through cloning (including mutation of one or more parameters through

multiplication by a random factor) or recombination (with new parameter

values drawn from the vicinity of the two parents’ values). The runs lasted

between 1,500 and 25,000 generations, stopping when fitness could not

be improved. Similar results were obtained from a different genetic algo-

rithm in a separate implementation.

Circadian Oscillations

To test a network for circadian oscillations, we simulated the system for 10

days following entrainment in LD 12:12, switching to constant conditions in

the first day. The expression levels of the dawn and dusk genes for days 4–8

were analyzed with fast Fourier transform nonlinear least squares (FFT-

NLLS) [23] at confidence level 0.95. If any component with period between

15 and 35 hr was found, we considered the network to be a circadian oscil-

lator. Figure S1 of the Supplemental Data shows the period and amplitude of

the oscillations and that these are affected by the functional criteria used to

evolve the networks. To remove very weakly oscillating networks, we

required the root mean square (RMS) distance between the time course

and a detrended version of the same time course to be at least 10% of

the mean level for at least one gene.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures and

one figure and can be found online at http://www.cell.com/current-

biology/supplemental/S0960-9822(09)01704-7.
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Supplemental Experimental Procedures 

Details of the Genetic Algorithm 
The population consists of 50 parameter sets. In each generation, the 5 least fit are killed. Each 
new individual is created by cloning or recombination (50% chance). The parent(s) is/are drawn 
with probability proportional to 1/sqrt(fitness rank) (where the most fit has rank 1). In the case of 
cloning, the new individual is mutated m times, where m is a number between 1 and 6 drawn 
from an exponential distribution such that 1 is 10 times more likely than 6. Each mutation affects 
a randomly chosen parameter, with a real-valued parameter 10 times more likely to be picked 
than a Boolean one. A real-valued parameter is mutated by drawing a value x from a normal dis-
tribution (σ=1) until the parameter may be multiplied by 1.05x without leaving the allowed range 
(see table, below). Boolean parameters are mutated by toggling. In the case of recombination, 
each Boolean parameter is taken from a random parent (with equal probability for both). Each 
real-value parameter is drawn from a normal distribution centred on the arithmetic mean of the 
parents’ values (v1+v2), with standard deviation σ =sqrt(π/2)*abs(v1-v2), then clipped to within the 
allowed range. 

The initial values for real-valued parameters are drawn from a flat distribution in log space. The 
Boolean parameters Lio and ija are 0 or 1 with equal probability. For the first 500 generations, all 
the gene-gene interactions ijo are clamped at 1 to promote the formation of useful connections. 
The penalty on connections is not activated until generation 1000. After 1500 generations, the run 
terminates whenever the best fitness has not improved in 100 generations, and after 25000 gen-
erations it terminates regardless. For scenarios with non-deterministic fitness score (the ones with 
noise), in every generation a randomly drawn individual has its fitness recalculated. 

Parameter min max 

iS  1e2 1e5 

iB  1e-3 1e3 

iL  1e-3 1e2 

iD  1e-1 1e1 

iT  0.25 14 



Parameter min max 

ijk  1e-5 1e-1 

Lio  0 1 

ijo  0 1 

ija  0 1 
 



 

 
Figure S1. Properties of the Evolved Circadian Oscillators 

The period and amplitude of the first component extracted by FFT-NLLS from the dusk gene ex-
pression in constant conditions, for the best-scoring networks from two scenarios: (A) Real radi-
ometry data and (B) multiple photoperiods without noise. The more realistic conditions are seen 
to produce more networks with a period near 24 hours, especially in constant dark. There is also a 
clear trend towards longer-period oscillations in constant light. The time courses began with a 
day of LD 12:12 and were normalised to a peak value of 1, but the analysis used data from 2 to 6 
days after release into LL or DD. To be classified as a circadian oscillator in Figure 2, a network 
with low-amplitude oscillations in the dusk gene would need stronger oscillations in some other 
gene(s). 
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