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Abstract

In this paper, we present the mathematical details underlying both an approach to the flexibility of regulatory networks and an
analytical characterization of evolutionary goals of circadian clock networks. A fundamental problem in cellular regulation is to
understand the relation between the form of regulatory networks and their function. Circadian clocks present a particularly
interesting instance of this. Recent work has shown that they have complex structures involving multiple interconnected feedback
loops with both positive and negative feedback. We address the question of why they have such a complex structure and argue that it
is to provide the flexibility necessary to simultaneously attain multiple key properties of circadian clocks such as robust entrainment
and temperature compensation. To do this we address two fundamental problems: (A) to understand the relationships between the
key evolutionary aims of the clock and (B) to ascertain how flexible the clock’s structure is. To address the first problem we use
infinitesimal response curves (IRCs), a tool that we believe will be of general utility in the analysis of regulatory networks. To
understand the second problem we introduce the flexibility dimension ¢, show how to calculate it and then use it to analyse a range

of models. We believe our results will generalize to a broad range of regulatory networks.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Current descriptions of the molecular circadian clock
have a negative feedback loop with delay at their heart
(Young and Kay, 2001; Johnson et al., 2003; Roenne-
berg and Merrow, 2003). Indeed, a single such feedback
loop with a very simple structure will produce robust
oscillations (Goldbeter, 2002a,b). It is therefore perti-
nent to ask why current understanding of the regulatory
networks of these clocks suggests that they almost
universally have a much more complicated structure
with multiple interlocking feedback loops with both
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negative and positive feedback. Several authors have
written about the reasons for this complexity (Johnson
et al., 2003; Roenneberg and Merrow, 2003; Smolen et
al., 2001; Cheng et al., 2001; Cyran et al., 2003; Glossop
etal., 1999; Lee et al., 2000; Ueda et al., 2001; Preitner et
al., 2002; Reddy et al., 2002; Daan et al., 2001; Albrecht
et al., 2001). The primary reason (though not the only
one) suggested is robustness either to parameter
perturbations or to stochastic noise. However, it has
not been shown that the observed structure leads to
robustness and there is no convincing explanation of
why one would expect this. Of course, it is likely that
some of the complexity arises from specific needs of the
organism in question. Nevertheless, it is important to
consider whether there are general principles behind the
form of the structures observed. That importance is
reinforced by the fact that the disparate clock mechan-
isms maintain biological rhythms in a very similar
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fashion in all organisms and seem to be a product of
convergent evolution (Young and Kay, 2001). In this
paper, we address this question by considering differ-
ential equation models of the clock. We show that clocks
involving a single loop are inflexible in a precise sense
and that the degree of flexibility of a clock network is
related to the complexity of the loop structure. Then we
present an analysis of why this flexibility is important
for the functioning of the clock.

Circadian oscillators are entrained by the daily cycles
of light and temperature (Johnson et al., 2003).
Entrainment by light is generally considered to work
by modulating a small number of particular parameters
of the regulatory network such as certain degradation or
expression rates. For temperature the mechanism is less
clear. It is generally assumed that temperature fluctua-
tions affect many more rates and it is unclear how these
combine (Rensing and Ruoff, 2002). For entrainment by
light or temperature to work it is therefore important
that a clock is sensitive to fluctuations in either of these
environmental factors. On the other hand, an important
property of many clocks is that key characteristics such
as period are not sensitive to sustained changes in, for
example, temperature (Johnson et al., 2003). To analyse
the relations between these possibly conflicting goals we
introduce a tool, infinitesimal response curves, which
allows us to characterise the stability and entrainment
properties of the clock.

The phenotype of the clock is largely determined by the
set of characteristics describing, for example, how it is
entrained by light and temperature, the phase relation-
ships between the protein products, the coordination of
output pathways, which phases (e.g. dawn and dusk) it
can track, its response to both sustained and stochastic
changes in environmental variables such as temperature
and pH and its robustness to internal fluctuations of the
molecular environment of the cell. These characteristics
are largely set by the network structure of the clock and
the values of the various parameters (such as rate
constants) describing the quantitative structure of the
interactions. Thus we can regard evolution as acting on
both the network structure and the parameters by small
changes, as revealed by the natural genetic variation
(Johnson et al., 2003) in Arabidopsis, Drosophila and the
mouse. Though larger changes occur such as deletion of
core genes, they do not seem to be maintained and thus
we do not consider them here.

Evolution will seek to simultaneously tune the multi-
ple and possibly conflicting characteristics of the sort
described above. To understand how this can be
achieved one first has to address two problems:

(A) one must understand the relationships between the
various characteristics (e.g. to what extent they can
be tuned independently and which of them are
strongly related);

Table 1
A list of the models considered together with the number of state
variables 7 and the number of parameters s

Model n s

Leloup et al. (1999) Neurospora 3 10
Leloup et al. (1999) Drosophila 10 38
Ueda et al. (2001) Drosophila 10 55
Leloup and Goldbeter (2003) mammal 16 53
Forger and Peskin (2003) mammal 73 36

The ratio of s to n is anomalously small for the Forger—Peskin model
(Forger and Peskin, 2003) because in it several groups of parameters
are assigned the same values and are regarded as the same parameter.

(B) one must ascertain how flexible the clocks structure
is, i.e., how easy it is to simultaneously tune for the
multiple goals.

To address the first problem, A, we show that the key
goals can be expressed in terms of certain system
variables so that each goal corresponds to tuning one
or more of these variables to certain prescribed values.
Our analysis will show that there is a significant number
of effectively independent quantities that evolution has
to tune and one is able to determine which combinations
of parameters should be tuned in order to move towards
the realization of a specific circadian characteristic.

For problem B we introduce a measure of the
flexibility, called the flexibility dimension d, that is an
important quantity because it tells us how many key
output variables evolution is able to tune at any time
and in how many dimensions evolution can move the
system. We produce evidence that this flexibility is much
lower than one might expect from the fact that all clock
systems depend upon a relatively large number s of
parameters such as rate or coupling constants. For the
published models considered in Table 1, s ranges from 9
to over 50 and in reality the number of parameters is
likely to be higher. On the face of it the large number of
tuneable parameters suggests that there is a huge
flexibility to explore and optimize key characteristics
of the clock. However, our analysis shows that d is much
smaller than s, usually by an order of magnitude and is
roughly proportional to the loop complexity of the
network as described below.

It follows from the definition of the flexibility
dimension d that if there are ¢ key independent
evolutionary target variables or characteristics, the
realization of these will be effectively impossible if d is
smaller than ¢. Thus there is a selective advantage in
increasing d to a value where the full range of key
evolutionary targets can be tuned. Since, our analysis of
problem A will indicate that the number ¢ of essentially
independent evolutionary targets is relatively large, it
follows that for simple networks there is selective
pressure for increased loop complexity.
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These results suggest that, faced with the need to
address multiple independent goals, evolution will have
used a strategy of decorating the minimal regulatory
module with extra structure in order to obtain the
necessary flexibility.

2. Key clock characteristics

The literature now contains a broad range of explicitly
molecular models for circadian clocks that are mathe-
matically defined by differential equations (Goldbeter,
2002a,b; Tyson et al., 1999, see Table 1). Differential
equations provide the most appropriate framework in
which to address the questions we are concerned with
here because the analytical tools such as IRCs and the
theoretical ideas around flexibility are most readily
developed in this context. Our analysis is not specific to
any of these models but in Table 1 we list a number of
them that will be used to illustrate the points we make.
All these models display sustained oscillations in the
appropriate parameter regimes and are entrained by
light—dark cycles of appropriate intensity. This sustained
oscillation is described by a (stable) limit cycle.

There is a relatively large number of key character-
istics of clocks. In this section we discuss some
important examples. In later sections we will show
how to describe these characteristics in terms of
infinitesimal response curves.

Clearly clocks must be robustly entrained by com-
monly occurring environmental signals. The phase of
entrainment must be appropriate. These aspects must
persist with the different environmental conditions
arising during the course of a year. They should be
stable to commonly encountered environmental varia-
tions such as those of temperature, pH, nutrition or
growth conditions. Because there is only a finite number
of molecules involved, perhaps even a relatively small
number, the clocks are intrinsically stochastic. There-
fore, the clock should be adjusted so that the period and
phase relationships are relatively robust to these
stochastic fluctuations and the clock should function
reliably in the presence of internal noise due to the
fluctuation in the molecular environment of the cell. It
has been suggested that, depending on the organism, the
clock is regulating the expression of several hundred to
more than a thousand genes (Harmer et al., 2000). It is
therefore important that appropriate phase relationships
for the protein products driving output pathways are
maintained. These phase relationships should also be
robust to the sort of perturbations discussed above.

2.1. Robust entrainment by environmental signals

The most basic requirement for a clock is that the
relevant 24 h environmental cycles should entrain it in a

robust way. Moreover, this entrainment needs to be
maintained in the face of perturbations such as
environmental and stochastic fluctuations.

To clarify the issues associated with robust entrain-
ment it may help to consider an approximate model of
the clock which is valid when the limit cycle y, of the
clock in darkness (i.e. with no forcing) attracts nearby
orbits sufficiently quickly (Fig. 1). If this is the case, in
light—dark (L-D) cycles with a long enough dark period,
the state of the clock at the end of the dark period will
be close to a state on y,. Thus the Poincaré map of the
clock in L-D cycles maps a small neighbourhood of y,
into another small neighbourhood of y,. If we therefore
mark each point on y, by its phase ¢ (0< ¢ <t where 7 is
the period), the Poincaré map is approximated by the
map ¢, — ¢, = F(¢,), where ¢, is the phase at dawn
on the nth day and ¢, is the phase at dawn on day
n+ 1. See Figs. 1 and 2 for a schematic representation of
this construction and an example of what the mapping F
will look like. It is natural to consider the function
D(p) = F(p) — ¢ — (L — 1) where L — 7 is the circadian
correction, 1i.e. the difference between the length of the
day L and the period 7 of the oscillator in continuous
darkness. Then @ can be regarded as a phase response
curve and F has the following form:

bni1 = F(¢y) = ¢ + P(dy) + (L — 7). (1)

Another way of looking at this equation is as follows:
consider a situation where light has a given intensity and
acts from dawn for S hours. Let &(¢) be the phase
change associated with applying this light when dawn
coincides with the phase ¢. If the phase at dawn is ¢,
then at dusk it is ¢, + S + @(¢,,). Therefore at the end
of the day the phase is given by Eq. (1).

The mapping F has a fixed point (F(¢,) = ¢,) at ¢,
provided @(¢,) =t — L. The local stability of this fixed
point ¢, is determined by the slope of F at ¢,. If y =
[F'(¢,)l<1 then ¢, is (locally) stable (¢, = F"(¢y) —
¢, as n — oo for all ¢ near ¢,, where F" =Fo---oF
(n times)). Therefore this fixed point is stable provided
—2<d'(¢,)<0. Entrainment corresponds to the exis-
tence of such a stable fixed point ¢, and ¢, tells us the
phase of the entrained state.

Fig. 1. A schematic representation of the discussion justifying the
approximation used to derive Eq. (1).
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If we change parameters we can expect that both the
shape of the graph of F as reflected in ¢ and the
circadian correction L — t will change. This will in turn
shift the point ¢, and may even cause the graph of F to
move above or below the diagonal ¢, = ¢, so that
there is no such fixed point and the system looses its
entrainment.

Consider, for example, changes caused by a change in
temperature. Temperature 7 will presumably affect a
number of parameters k; which will be functions of 7. It
follows that while the stable fixed point exists, its
position and its stability exponent y depend upon T
¢, = ¢.(T) and y = x(T). What is required is that ¢, =
¢.(T) and y(T) are roughly independent of temperature
T. This ensures that the entrainment persists
and remains stable in different temperature regimes.
If the shape of @ does not vary much with para-
meter changes then we see from Eq. (1) and Fig. 2
that the crucial thing is that the period t does not
change too much with temperature. It is this that
has been observed experimentally (Rensing and Ruoff,
2002). This stability of the period under temperature
changes is referred to as temperature compensation.
We will consider these aspects further in Section 5.2
when we have introduced the tools we need for a
characterization.

This need for robustness of the phase of entrain-
ment and its stability would seem to apply under more
general situations; for example, in the face of general
parameter perturbations and intrinsic and extrinsic
stochasticity.
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Fig. 2. Representation of the mapping F given by Eq. (1).

3. Flexibility and evolutionary accessibility

All clock systems depend upon a relatively large
number s of parameters. These parameters, for example,
determine the functional descriptions of transcription,
translation, (de)phosphorylation, degradation and bind-
ing. They include all the rate constants and all the
maximum rates of transcription, translation and protein
modification. We denote these parameters by k; and
collect then into a vector k= (ki,...,k;). For the
published models considered in Table 1, s ranges from
9 to over 50 and in reality the number of parameters is
likely to be higher.

Varying the parameters k = (kq, ..., k) causes output
characteristics Q; = Q,(k) to change. The outputs Q; we
consider will include quantities such as period, the
phases of the maxima and minima of mRNA and
proteins, the amplitude of these maxima and minima,
and the levels of mRNA and protein at prescribed
phases. They can also be functions rather than numbers;
for instance a phase response curve. All of the outputs
Q; we consider are functions of the limit cycle, i.e. you
only need to know the limit cycle to know the value of
the output Q;. Usually we consider several outputs Q;
simultaneously and then we collect then into a vector
0 = (Q)). For example, we may wish to simultaneously
tune these several outputs.

When the parameters are changed (usually by small
amounts) then the variation is denoted by ok =
(0k1,...,0ks) (so that the new parameter values are
given by k + 0k), and the change caused in an output
such as Q; is denoted by 60;.

Each variation of the parameters from ki,..., kg to
ki + oky, ..., ks + 0k, will cause the limit cycle to vary
and this in turn changes the vector of output character-
istics Q = (Q;) by an amount 6Q = (60)).

The variation 6k = (Jk;) is an absolute one in that the
size of the changes dk; bears no relation to the size of the
parameter values k; that we are varying about. For the
models we consider the k;s can vary over more than one
order of magnitude. It is therefore often more appro-
priate to consider the proportional variation in a
parameter which is given by 0y, = ok;/k;. These changes
also have the important advantage of being dimension-
less. We say that such variations are proportional.

We could also do a similar scaling for the output
variations 6Q;. However, we do not do this because (a)
we assume that the output variables have been chosen so
that they are dimensionless and so that their sizes are all
of the same order of magnitude, and (b) because later we
will consider the case where dQ is the actual variation in
the limit cycle, in which case such a scaling is not
natural. One can usually ensure that (a) is true by
dividing the quantity Q; by an appropriate scale. For
example, rather than consider period p as one of the
output variables, take p/L where L is daylength.
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If the variations ok; are small then the relation-
ship between ok and 0Q is approximately linear
and given by a matrix M = (M) where 6Q; =
>_.:M;ok; is the change to Q; caused by a change
in k of dk. The numbers M are sometimes called the
linear sensitivities of the quantity Q; (Hwang et al,
1978).

Thus 6Q = M - dk. In terms of the scaled parameter
changes d#, the change 60 in Q is given by

80 =M - Ay -on, (2)

where A4y, is the diagonal matrix diag(ky,...,ky).

The large number of tuneable parameters would
seems to suggest that there is a huge flexibility to
simultaneously explore and optimize key characteristics
of the clock such as those discussed above. However,
even when the parameter variations can freely explore
all the parameter combinations, the direction of the
resultant changes in a given vector Q = (Q,) of outputs
may be highly non-uniform, with the result that many
output changes are capable of being reached only with
great difficulty or not at all. A good picture to have in
mind is of a round s-dimensional ball B of parameter
variations with small radius ¢ centred on the base
parameter value k. If ¢ is sufficiently small, the image E
of B will be approximately an ellipsoid and the size of its
axes o) >0,>,... of this ellipsoid (ordered by magni-
tude) may well decrease very rapidly. In this case most
random variations in the parameters will produce
output changes 5Q that are lined up with the axes
with the largest size ;. Then if e is a unit vector in
such a direction and the N random parameter varia-
tions produce output changes 60¥, ¢ =1,...,N, the
correlation

S, (009, e)?
lell>>, 160912

will be relatively large. In fact, it will be proportional
to the square of the magnitude of the axis. Another
way of looking at his is to say that output variations
00 in the directions corresponding to the other axes
are inaccessible in the sense that they will require
changes 6k in the parameters for which the ratio
of magnitudes [0Q|/|I0k|| is very small. These two
ways of looking at it are essentially equivalent as we
show below.

The reader should note that these notions of
accessibility given below are applied in the linear regime.
The changes dQ and the parameter dk needed to achieve
them are small even though in the inaccessible case the
size of 6k may be much greater than 6Q. We are not
considering the case where 0Q is so large (and
inaccessible) that 6k must be so large that the perturba-
tion is outside the region where the linear approximation
is accurate.

3.1. The approach via targeted parameter variations

We fix a vector O = (Q;) which represents a particular
set of outputs and firstly define the flexibility dimension
in terms of Q. For example, Q might be the vector whose
entries are the phases of all the maxima and minima of
all mRNA and protein products and all amplitudes of
the oscillations in these products. Later, we will define
the flexibility dimension which applies to the complete
set of output variables determined by the limit cycle.

A proportional parameter change dy gives rise to a
change in the outputs of 06Q= M'-0n where
M = M - A;. For a given output 60 consider the set
of all proportional parameter changes Jn such that
M’ -6n=00Q. Let Rsp be the supremum of the ratios
1001/ 16n]| for dn in this set, i.e.

1601
llonll

Since 0Q and oy are linearly related Rsp does not
depend upon the size of §Q but only on its direction.

For accessibility we require that Rsp is not too small,
because otherwise the given output change can only be
obtained by an excessively large parameter change.
However, usually we do not want to measure accessi-
bility in absolute terms but in terms which relate it to the
most accessible output. Thus we also consider

Rig = sup{128L: a1 = s0 . ()

R = sup R(;Q.
oQ

Therefore, we fix a small number ¢ and define the
accessible cone C(k,¢) to consist of all vectors 6Q such
that Rjp is greater than eR*.

If Q is scaled (i.e. all the Q; are scaled by the same
amount) then Rsp and R* are scaled in the same way
and therefore there is no change in the accessible cone.
However, if each of the Q; are scaled by a different
amount, there may be changes, but this is easy to
calculate and take account of.

Definition 1. The flexibility dimension d of the output
vector Q@ = (Q)) is the largest dimension of any linear
subspace that is contained in the accessible cone C(k, ¢).

Roughly speaking, if W is such a subspace then all
accessible vectors dQ are of the form w + { where w is in
W and, compared to w, the magnitude of { is extremely
small (of order ¢). Thus, neglecting these relatively very
small adjustments (, the set of accessible vectors is d-
dimensional.

3.1.1. Singular values and the flexibility dimension

Consider a m x r matrix B whose number of rows m is
greater than or equal to the number of columns r. Every
such B can be written as

B=UDV", (4)
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where U is a m x r orthonormal matrix (UU' =1,
and U'U =1,), Vis a r x r orthonormal matrix and
D = diag(oy,...,0,) is a diagonal matrix. This repre-
sentation is called the Singular Value Decomposition
(SVD) of B (Press et al, 1988). The elements
c1=--->=0, are called the singular values of B.
From (4) one immediately deduces that B.v; = gju;
where v; and u; are, respectively, the columns of  and
U corresponding to the singular value ¢;. The columns
v; of V' with g; =0 provide an orthonormal basis for
the kernel of B (vj-vr =) and the columns u;
of U with ¢;#0 are an orthonormal basis for the image
or range of B.

Since the relationship between scaled parameters and
outputs is given by 0Q = M - Ay - oy, we study the
singular value decomposition of M’ = M - A;. For this
matrix, r is the number of parameters s, and m is the
number of outputs 6Q; considered.

Theorem 2. The flexibility dimension d of the output
vector Q = (Q;) is given by the number of singular values
o; of M' with o;/c1>e.

This result provides an effective and practical way of
calculating the flexibility dimension as it is relatively
easy to compute M and hence M’. The proof is given in
Appendix A (Section A.1).

If one wants to measure flexibility in absolute terms
where Rsp is compared to ¢ itself rather than ¢R*, then
the dimension is given by the number of singular values
o; of M’ with ¢;>¢. In fact, the numbers g; give the
length of the axes of the ellipsoid E described above.

Note: In many cases of interest (and in all the
examples in Table 1), the o; decrease very fast. This
means that the dependence of the flexibility dimension
on ¢ is relatively weak. For example, when the o;
decrease at least exponentially then the growth in d as ¢
is decreased is at most proportional to log1/e.

3.2. The approach via random variations of parameters

Alternatively, we can define the accessible cone by
considering random variations where the output vectors
50Y = (5Qm) ¢=12,. N) arise from a large
number N of Varlatlons 5k =k; 517([) where the
proportions 5171 are zero-mean independent identically
distributed random variables. We compare the variance
of the projection of the 60 onto a given vector 6Q
with the variance of the sizes |00, i.e. we consider the
ratio

i 22e000,00)
5ol P LIk
We then define the accessible cone by

C'(ek) = 160 : Rig>s). (3)

(R;p) =

3.2.1. Principal components: the optimal orthogonal basis
for projecting the outputs 6Q'

Suppose for example, that one is considering a
random set of perturbations and corresponding outputs
5Q“), ¢=1,...,N, as above. Consider any orthonormal
basis e = (¢;) of the space of output vectors 60 (le;|| =1
and e; - ¢; = 0 if i#j). Let

k
00 =3 (60" - ¢e;

=1

err(6Q") =

denote the size of the error if we approximate Q) by its
projection onto the subspace spanned by the first k
elements of the basis. Then

erri(6QY) = fj 60 - ¢

Jj=k+1

because the basis is orthonormal. We seek to find the
basis e = (¢;) which for all k=1 minimizes

= —Z erri(00) = —Z 300 ¢

¢ j=k+1

the average of erry over all outputs §Q“). Since the mean
of the 5Q[ 1S zero, vi is the variance of the error
projected onto the directions e; with j>k.

The basis minimising the vk for all k>1 is given by the
eigenvectors ¢; of the self-adjoint linear operator Y
defined by Y-e=N""3,(60 -e)e (ordered by de-
creasing size of their corresponding eigenvalue) and for
this basis the corresponding eigenvalue is v?. A matrix
representation of this operator is given by taking the
matrix 4 whose columns are the vectors 6Q¥ and
forming the matrix Y = N~'4A4". This is a matrix of size
(dim 6Q) x (dim Q). Because it is self-adjoint (Y’ = Y),
its eigenvalues are always real and its eigenvectors form
an orthogonal basis. The pairs (e;,v;) consisting of the
vector e; and corresponding eigenvalue v; >0 are called
the principal components of the ensemble {60¥}.

If we write Q) = . ([)ej as above then the Q') are
mainly in the direction of the principal components e;
with the largest v;. Moreover, if v, <e¢ then the ratio of
the variance of the lengths of the vectors Q¥ —
Zk_l }g)e, to the Vanance of the lengths of the vectors
5Q“) is of order &2, O(?).

The following theorem relates the principal compo-
nents, the SVD of M’ and the cone C'(¢, k).

Theorem 3. If the components 5;15.5) of the vector on© are
independent then, in the limit N — oo, the maximal
dimension d’ of a linear subspace in the cone C'(g, k) is the
number of singular values o; of M’ with o7 2> ¢25 where

=207

As above, M’ = UDV' is the singular value de-
composition of M’, u; denotes the jth column of U,
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m =dim 6Q and D = diag(oy,..
singular values.

Thus we see that the cones C(er, k) and C'(ep, k) are
equal if

.,0m,) 1S the matrix of

&1 = &

Since, typically the singular values decrease quickly the
square root term is no too far from one. For the
examples in Table 2 it takes the following approximate
values: 1.01, 1.2, 1.003, 1.02 and 1.38. In this sense both
approaches give the same flexibility dimension.

3.2.2. Definition of the clock’s flexibility dimension

As defined above the flexibility dimension for a given
vector Q = (Q;) of outputs depended upon the set of
output characteristics Q; we have chosen to focus on.
However, there is a natural way to define a flexibility
dimension of the full system which accounts for the
complete set of possible outputs in one go. This is
because all changes in the output characteristics of
importance are determined by the change in the limit
cycle y and its period t. A small change dk in the
parameters will cause a change (Jy, dp) to the limit cycle
y and its period 7 and the changes in all output variables
can be calculated from these.

The limit cycle can be regarded as a function y : R —
R” which is periodic with period t: y(z 4+ ) = 7(¢). Since,
the period 7 can vary with the parameters k it is
necessary to normalize y and replace it by

7(1) = p(x(k)0).

Then, as k varies,  remains periodic of period 1 and
therefore the derivative M* : ok — (67,01) is a map
from variations 6k into the product of the space of
functions of period 1 with R. Clearly, (},t) determines
(y,7) and vice-versa. Thus we consider M*: 0k —
(07, 67) rather than the correspondence ok — (dy, 01).

Definition 4. The flexibility dimension d (of the system) is
the largest dimension of any linear subspace that is
contained in the accessible cone C(k,¢) for Q = (7,1).

Note that if we are dealing with an entrained system
the period t does not change when the parameters are
varied by a small amount. Therefore in this case we can
ignore the variations J7.

Since we assume that the outputs are a function of the
limit cycle and its period alone, for any given vector
0 = (Q)) of outputs, the matrix M above is the form
M, - M* where M* is the above linear operator. The
matrix M, is the linearized relationship between the
normalised change in the limit cycle 6} plus change J7 in
period and the particular output characteristics being

Table 2
Flexibility dimension and relevant singular spectrum of various published models
Model n B d lOgIO crj/(rl with C//Gl >1072
Leloup et al. (1999) Neurospora 3 10 1,1,2,3 0, —1.03, —1.22, —1.30, —1.78, —1.93
1,2,3,4 0, —0.97, —1.15, —1.26, —1.62, —1.75, —1.81
Leloup et al. (1999) Drosophila 10 38 1,3,3,3 0, —0.69, —0.94, —1.68, —1.96
2,3,3,6 0, —0.19, —0.85, —1.32, —1.38, —1.43, —1.59
Ueda et al. (2001) Drosophila 10 55 1,1,1,2 0, —1.21, —1.86, —1.99
1,1,1,2 0, —1.33, —1.52, —1.67, —1.84, —1.93
Leloup and Goldbeter (2003) mammal 16 53 2,3,3,5 0, —0.30, —0.91, —1.34, —1.46, —1.61, —1.64,
—1.75, —1.95
1,2,2,5 0, —0.71, —1.24, —1.4, —1.5, —1.71, —1.74,
—1.78, —1.88
Forger and Peskin (2003) mammal 73 36 3,4,5 7 0, —0.41, —0.64, —0.79, —1.14, —1.31, —1.35,
—1.57, —1.65, —1.84, —1.91
5,7,9,10 0, —0.14, —0.37, —0.58, —0.61, —0.67, —0.82,

-1.07, —-1.1, —1.32, —1.53, —1.61, —1.7, —1.83,
—1.84, —1.99

n and s are, respectively, the number of dynamical variables and parameters. The four values given for d are, respectively, the values of the flexibility
dimension d when &2 = 0.05, 0.01, 0.005 and 0.001 so that the first d principal components capture approximately 95%, 99%, 99.5% and 99.9% of
the variance. Thus the third of these is the number of log g; which are greater than (log;,0.005)/2 ~ —1.15. The set of upper values of d for each
model are for absolute changes, i.e., they do not take account of the size of the parameters being perturbed so that the singular values given are those
for M*. The lower values are for changes that are measured relative to the size of the corresponding parameter values and therefore the singular
values are those for M™* - 4, (see text). Usually the set of lower values are the most relevant. We note that almost universally s is bigger than d by an
order of magnitude and that d grows roughly linearly with the loop complexity. The ratio s/d is lower for the last model, but in this case the number
of parameters s has been kept unusually low by assuming several different parameters always have the same value.
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considered and as such is well behaved and casy to
calculate. Therefore the relationship described by M* is
the crucial one and we estimate d from M*.

Important Example. If Q is the vector whose entries are
the phases of all the maxima and minima of all mRNA
and protein products and all amplitudes of the oscilla-
tions in these products, then M), is easy to calculate.
Suppose that the time at which the ith product is
maximal (resp. minimal) is 77 (resp. 7). Let the limit
cycle be given by y = (x;(¢)) so that x;(¢) is the time
course of the ith product. Then the ith amplitude is
given by the A; = x;(t) — x;(t;) and the phase of the
maximum (resp. minimum) of the ith product is given by
¢,/ (resp. ¢, /t) where 7 is the period of the limit cycle.
Thus Q= (A1,..., An,df,... 0, d7,...¢,) and the
linear transformation M, is given by M, - (§,7) =
(A, ®T,d7) where

A= ((3)61([?) — 5X1(lf), cee 5)6]([;:) — 5)(1(1;)) (6)
and

o _ (097 Sy
@ _<561(tf)""’5€1(t§>' @)

Thus we see that provided the curvatures %;(rF) are of
order 1 then the flexibility of the limit cycle and that of
the Q considered here will be very close.

In Section B.3 we explain how to approximate and
numerically calculate M*.

3.3. Inflexibility of circadian clock models

We have estimated d directly for a range of systems by
numerically calculating M™* for these systems and then
carrying out the singular value decomposition of
M* . Ar. These results are shown in Table 2. The
flexibility dimension has been calculated using Theorem
2 above, i.e. by calculating the number of singular values
o; of M* - Ay with o;/01>e.

We find that all these systems are relatively inflexible
in the sense that for small values of & of the order
1073-1072 the flexibility dimension  is smaller than the
number s of parameters by an order of magnitude. On
the other hand, increasing the loop complexity generally
causes d to increase proportionally.

3.4. Floquet exponents and decay of the singular
spectrum

The local structure of the dynamics near to the limit
cycle are largely determined by the Floquet multipliers.
They are associated with the different rates of contrac-
tion onto the limit cycle (Guckenheimer and Holmes,
1983). For the clock systems considered here, (i) one
multiplier is 1 (corresponding to the direction along
the limit cycle), (ii) all others have modulus less than 1

(i.e. the limit cycle is attracting) and (iii) almost all of
them have a very small modulus (corresponding to
directions with very fast contraction onto the limit
cycle). The inflexibility is due to (iii)) because the
flexibility dimension d is related to the number of
Floquet multipliers A for which 1/|log/| is small (of
order ¢).

Property (iii) is due to the loop structure of the clocks
and the nature of protein degradation and modification
because these determine the Floquet multipliers. It is
therefore expected to be a general feature of regulatory
networks. Although it is difficult to prove general results
about how rapidly the multipliers decrease, it is clear
that a large class of regulatory systems will have this
property. What is important for this are the following
characteristics: (a) one or more of the protein products
in each loop has a degradation rate whose time average
is not too small and (b) the forward and backward rates
ki, k; : P; = P (typically corresponding to (de)pho-
sphorylation) also have a time average that is O(1) on a
time scale of hours. This fact ensures that the product of
all the multipliers is of the order exp(—rt) where 7 is the
period of the oscillator and r is the number of products
in the loop. This product is therefore extremely small. A
more detailed calculation is needed to show that only
very few of the multipliers are larger than O(e).

3.4.1. Sources of flexibility

Relevant singular values (i.e. those with ¢/, >¢) and
the corresponding Floquet multipliers are often asso-
ciated with specific structural or dynamical aspects. For
example, as we discuss in the next section, the largest
multipliers of the models considered here are usually
associated with phase changes.

For a single loop the other obvious way to generate
relevant multipliers is to have a topology and rate
constants that ensure that under reasonable starting
conditions the mean time before a protein is degraded is
large (for example because it typically has to go through
a series of modifications and their reverses before it is in
a state where it can be targeted for degradation).
Otherwise, all but one of the Floquet multipliers have
very small modulus.

A interesting consequence of this observation is that
the need for flexibility constrains the molecular struc-
ture. For example, it seems to imply an evolutionary
advantage for selective degradation. The more products
in a loop that are degraded the smaller the modulus of
the Floquet multipliers and hence the less flexible the
system. Since some degradation has to occur, this
suggests that as few as possible of the protein products
in a loop should be degraded at as low a rate as possible.

The number of these relevant multipliers is multiplied
when loops are coupled and, in addition, new ones result
from the coupling. To see the latter consider the case
when the coupling is weak. There will typically be a
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multiplier associated with the way in which perturba-
tions of the relative phase of the two loops die away. As
the coupling is increased this multiplier may become
smaller or complex but it will usually remain relevant.
Thus we see that the flexibility dimension is much less
than and roughly proportional to the loop complexity.

3.4.2. Principal components

We show below in Section A.2 that, in the limit of
N — oo, the principal components (e;,v;) of a set of
output changes 0 produced by N random parameter
changes is given by the singular value decomposition of
the matrix M’. Applying this to the case where Q = (7, 1)
we get a set of principal components (e;, v;). Like 7, the ¢;
are given by functions e; : R — R" which are periodic
with period 1. We discuss how to numerically calculate
these in Section B.3.

Definition 5. The (e;, v;) are called the principal compo-
nents of limit cycle variations.

If the limit cycle is given by x = y(¢), a phase change
by an amount o produces x = y,(¢f) = y(¢t + o). Thus

0

=gl 20=70

represents an infinitesimal phase change. When each of
the models in Table 1 is entrained by light, we find that
the dominant principal component, of the limit cycle
variation (e;,v;) (i.e. the one associated to the largest
singular value ¢;) is such an infinitesimal phase change
(see Fig. 3).

0.4 71 (a)

0.4 [

of 4)
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o
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Phase ¢ from 0 to 24 hrs

Fig. 3. (a) The derivative with respect to time of the limit cycle for the
Drosophila model of Leloup et al. (1999). (b)—(f) the principal
components with largest singular values for the matrix M* for the
same model. Only the per mRNA, phosphorylated TIM and nuclear
PER:Tim complex levels are shown. The corresponding singular values
are 1561.7, 318.1, 178.7, 32.6, 17.2. Note the similarity of the curves in
(a) and (b) showing that the dominant principal component is an
infinitesimal phase change.

This can be understood as follows. A general insight
from the theory of dynamical systems is that those
directions that a limit cycle moves most in when
parameters are varied are correlated with the directions
that are softest with respect to perturbations of the
initial conditions, i.e., those directions with the property
that a perturbation of the dynamical variables away
from the limit cycle is least rapidly damped. These
correspond to the direction associated with the Floquet
multipliers (Guckenheimer and Holmes, 1983) of max-
imum modulus. This is shown in Section B.4. A
perturbation of the dynamical variables causes a
deviation away from the limit cycle, which is subse-
quently corrected. The correction has a rapid phase in
which the shape of the limit cycle is recovered (so that
x = y(t + o)) and a slow phase where the phase shift « is
corrected. The way that this latter relaxation takes place
will typically be described by one or two multipliers
(Guckenheimer and Holmes, 1983): one when the
coupling to light is relatively weak and the phase adjusts
monotonely and two (as in the Neurospora model of
Leloup et al. (1999), see Tables 1 and 2) when the phase
correction overshoots and the multipliers are complex
conjugates. Thus parameter changes easily result in a
change of phase while other characteristics (such as
phase relationships) are harder to change with the
difficulty being greatest in systems with lower loop
complexity.

3.4.3. Phase adjustments and homotopies to weak
coupling

For each of the models considered we can express the
parameters k; as functions k; = k;(u) of another para-
meter u so that when u = 1 the parameter values are as
in Table 1, when p = 0 the system is unforced by light
(and therefore autonomous) and for all O<u<1 the
system has a period 7y of 24 h and is entrained by light.
This means that as p is changed from 0 to 1 the one-
parameter family of systems stays inside the 1/1 Arnold
tongue (Guckenheimer and Holmes, 1983). Suppose the
differential equation describing the model is given by
X = ¢g(t,x,k), x € R". For this part of the discussion it is
useful to cast this into its equivalent form

¥ =9(0,y, k(w),
0=1, ®)

because this is an autonomous ordinary differential
equation and therefore generates a dynamical system in
R" x R. When u=0 the system has a invariant
torus Ty =y X S! where Yo 1s the limit cycle of the
system y = ¢g(0, y, k(0)) (which does not depend upon 6
when k = k(0)). This torus is normally hyperbolic
(Guckenheimer and Holmes, 1983) since the limit cycle
is hyperbolically attracting and therefore, as u is
increased from 0, while u is small the torus persists in
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the sense that it is deformed into a nearby attracting
invariant torus 7',. Since these systems are within the
Arnold tongue, T, contains an attracting limit cycle y,,.
Let 7,(s) denote the point y,N{0 =s}. The tangent
vector v to the intersection of 7', with {0 =s} is an
eigenvector of Y(s,s + t,) with eigenvalue 2, = 1 — O(u)
close to 1. Thus if the other eigenvalues are much closer
to zero (as is the case for the systems in Table 1) the sum
in Eq. (B.20) giving (Oy;/0k;)(¢) is dominated by the
term (4, — 1)"'v, [0 X+, (s5) ds where 7 = log /,
is close to 0. It can be seen then that the dominant
principal component ¢,(s) (see above) is very close to
being a infinitesimal phase shift of the original limit

cycle y, 1y = a,(0), Le.

d
D)~ LoD =,

(=0
As u is changed further towards 1, we can expect to see
bifurcations of the form shown in Fig. 21 of Ostlund et
al. (1983). As 1, moves away from 1, it may collide with
another smaller eigenvalue. Until this happens we are
essentially in the case discussed in the last paragraph.
Near to where such a collision takes place we can restrict
attention to the centre manifold determined by 4, and
the eigenvalue it is going to collide with (assuming the
other eigenvalues remain away from this pair). It is the
dynamics on this two-dimensional centre manifold that
should be compared with the above-mentioned bifurca-
tions. We expect that when A, collides with another
eigenvalue they will produce a pair of complex conjugate
eigenvalues A, and /T,,. When this happens the one-
dimensional eigenspace given by v, is replaced by a two-
dimensional eigenspace V; and one can show that the
two dominant principal components ¢,(s) and ¢,(s) are
dominated by o, (s) and a);(s).

4. Infinitesimal response curves

We now turn to consider the key question above
about evolution seeking to simultaneously tune multiple
characteristics: to what extent can the key characteristics
be tuned independently and which of them are strongly
related. In particular, we would like to describe which
combinations of parameters can be tuned in order to
produce a specific circadian characteristic. The aim is to
characterize the key evolutionary goals so that they are
given by transparent and comparable mathematical
conditions. Again we make use of the fact that the
effect of small parameter changes can be well approxi-
mated using perturbation theory. The quality of
approximation can be determined by calculation of
higher-order terms.

Our main tools are what we call infinitesimal response
curves. We consider the linear approximation to the
change 0Q; produced by a small change dk; of the

parameter k;. An infinitesimal response curve for Q; and
k; tells us how different phases of the oscillation
contribute to 60Q;.

Suppose that our oscillator has a stable limit cycle
7 = v of period 7 given by x = g(¢) with ¢ representing
the phase, i.e. time # mod 7. A key insight is that for each
parameter k; and each output Q; there is a function
fkl_,Qj(qS) of the phase ¢ such that if one changes
(ki,...,ky) to (ki + dky,... ky+ 6ky;) only when the
phase ¢ is between ¢, and ¢, (not necessarily close
together), the linear approximation to the change 60Q; in
a output variable Q; is of the form

s )
0= 3ok ( /4) g d¢> LoD, ©)

Theorem 6. For each parameter k; and each output Q;
which is a function of the limit cycle y and its period 7,
there is a unique function f kian(¢) of the phase ¢ such that
Eq. (9) holds for all choices of ¢, and ¢,.

Definition 7. The function f' k’_’Qj(s) is called the infinite-
simal response curve (IRC) of variable Q; on parameter k;.

We give formulas for these IRCs and a proof of
Theorem 6 in Appendix B. Using these the IRCs can be
numerically computed very rapidly from their analytical
expressions for all parameters and all relevant output
variables. Fig. 4 shows the largest amplitude IRCs for a
model of the Drosophila clock when Q; is period.

Recall the definition of the normalized limit cycle j
given in Section 3.2.2: if x = y(¢) is the limit cycle and
T = 1(k) is its period then 7(¢) = y(t(k)?). In what follows
we are going to use the fact that any such small change
00; is a linear function of the normalised change 67 in
the limit cycle (see Section 3.2.2) and the change 7 in
the period: 6Q; = M* - (67, 61).

4.1. IRCs and phase response curves (PRCs)

When Q; is the period of the cycle for a free-running
clock

¢
S(p) = —0k; - /d) Sri0(P)do + O([|6k[1) (10)

is the phase response curve (PRC) (Winfree, 2001) of a
small perturbation Jk; in the parameter k; applied
between the phases ¢; and ¢,. This follows from the
Lemma of Section B.5. We are using the fact that at the
infinitesimal level the change in period dr is minus the
change in phase ds.

If this change in k; is caused by light then Eq. (10)
gives an approximation to the usual phase response
curve for a light pulse applied between the phases ¢,
and ¢,. Thus, since for the models under considera-
tion the curves given by Eq. (10) provide excellent
approximations to the usual PRCs even when the
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Fig. 4. This shows all the large amplitude IRCS f, ,erioq() for period
for the Drosophila model of Leloup et al. (1999).

perturbations dk; are not particularly small (see Fig. 5),
the analytical expressions allow rapid computation of all
possible PRCs without having to simulate the system
and calculate PRCs in the usual way.

Using the results of an analysis such as that shown in
Fig. 4, one can estimate the effects of any hypothetical
input pathway on the phase and strength of entrainment
(see next section). Moreover, it follows from the
linearity of Eq. (9) that one can also estimate the effect
of combinations of different pathways by simply adding
them together with the appropriate weights. We will also
show below that via Eq. (9) such an analysis gives key
insights into stability, and temperature and pH com-
pensation.

5. Evolutionary aims and IRCs

In the discussions that follow the linear nature of the
relationship in Eq. (9) will play a crucial role because it
allows us to combine changes to multiple parameters by
simply adding them together with the appropriate
weights. Thus, for example, if light of intensity I acts
by changing k; and k; by amounts ok;(/) and dk;(1)
between ¢, and ¢, then the combined (infinitesimal)
phase response curve is given by

1) = / D) - L1 )
- o i kj,period
K1) f i peri(®) . (11)

5.1. Entrainment

To consider how entrainment can be discussed in
terms of IRCs we return to the earlier discussion of

Advance or delay in hrs

Phase ¢

Fig. 5. PRC:s for the Drosophila model of Leloup et al. (1999) for light
pulses duration 1 (blue stars), 2 (purple triangles) and 4 h (red circles)
together with the approximation of them by integrating the
corresponding IRC (as given in Eq. (10)) from dawn to dusk
(corresponding colour solid curve). The PRCs are calculated directly
by simulating the system. In this model light acts by increasing the
degradation of TIM-p2 and thus the IRC used in the integral is
~f vquperioa(®) because the parameter vy, is changed when light is on.
The effect of the light is as in the original publication (vqr is changed
from 3 to 6nMh-1) but we very slightly changed the light profile by
smoothing out the discontinuities.

Section 2.1. We consider the situation where light of
intensity I acts for a time interval of duration S from
dawn to dusk. We suppose that this light acts by
changing the parameter k; to k; + dk;(I). If the phase at
dawn of the nth day is ¢, then at dusk it is ¢, + S+
®(¢,)) where

S+¢
D(p) = —oki(I) S Sy perioa(t) At (12)

provided that the linear approximation is valid. There-
fore at the end of the day the phase is given by

d)n—t-l = F((rbn) = d)n + ¢(¢n) + (L - T)' (13)

If there are multiple input pathways then one can use the
analogue of Eq. (11) to combine them. For each
parameter k; affected by light one obtains a function
®; as in Eq. (12) and then just adds them to get
=39,

As discussed in Section 2.1, entrainment corresponds
to the existence of a stable fixed point ¢, of the map F
given by Eq. (13) because then, for almost all starting
conditions ¢, the system eventually settles down to a
state where ¢, is approximately constant at ¢,
(¢, = ¢, as n— 00). A fixed point ¢, satisfies the
equation @(¢,) = 7 — L. If the graph of Fis drawn (as in
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Fig. 6), the fixed points correspond to the intersections
between the graph and the diagonal given by ¢, ;| = ¢,,.
The fixed point (and hence entrainment) is stable
provided —1 < ®(¢,)<0 because then |F'(p,)|<1.

Robustness of the entrainment means that the stable
fixed point of F persists under reasonable environmen-
tal, physiological and other perturbations. Thus en-
trainment requires that the amplitude of @ is greater
than the circadian correction L — 7. Otherwise, there
will be no intersection between the graph of the map F
and the diagonal given by ¢,,; = ¢,. However, it
follows that, since @ is approximately given by Eq. (12),
entrainment can only occur if oki(I)f ., periog has suffi-
cient amplitude to produce a phase shift of L —1
(Johnson et al., 2003). The required amplitude as a
function of L —1t can be estimated from Eq. (13).
Moreover, the fixed point ¢, determines the phase of
entrainment and this can be determined from £, 45 i
the same manner as from a PRC.

Although this relationship is only approximate it is
very informative and, for example, as we see in the next
section, it allows us to study the relationship between
robust entrainment by a given environmental variable

25 T T T T
14
13
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Fig. 6. The phase return mapping F for the Drosophila model of
Leloup et al. (1999) when the day length is 9 h. The solid line shows the
mapping as calculated using the IRCs as in Eq. (12) and the circles
show the mapping using the numerically calculated PRC. The
embedded graph shows the phase of entrainment as a function of
the period 7 of the unforced system calculated using the mapping (solid
line) and directly (dots). The period t was changed using a numerical
tool that we have developed that allows one to move parameters so as
to change a particular output (here 7) without changing the other key
outputs.

and robustness of the period to sustained changes in that
variable.

5.2. Temperature compensation

As noted above circadian clocks are temperature
compensated in that they maintain a roughly constant
period over a relatively wide range of temperatures
(Rensing and Ruoff, 2002). Temperature 7T will pre-
sumably affect a number of parameters k; which will be
functions of T : k; = k;(T). When temperature changes
from T to T + 0T then the change in the parameter k;
will be approximated by k(T)- 6T where ki(T) is the
derivative of k;(T). Thus by the linearity of Eq. (9) we
can define the IRC for temperature (at 7) acting on the
output variable Q; by

S1.0(0) = Ki(T) 1,0,(®).

Then temperature compensation holds around 7T pro-
vided the integral of over a complete cycle is close to
zero (Ruoff, 2000):

| rro@ap~o (14)

By Eq. (9) the change in Q; caused by such a
temperature change is given by

4 T
00, =0T - 3 ki(T)- /0 1,0/(@®)dd + O(16T?|)
i=1

~oT [ g @40,

The chief advantages of IRCs in this context are (a) that
the effects of multiple parameter changes are very easy
to compute and (b) that using the discussion about the
relationship between entrainment and IRCs in Section
5.1 and the discussion here we can relate temperature
compensation and the entrainment properties of tem-
perature.

A commonly considered functional form for the
temperature dependence of a reaction is given by the
Arrhenius relation:

E;
ki= A,-exp(—RT), (15)

where 4; is the so-called pre-exponential factor, E; is the
activation energy of the reaction and R is the gas
constant. In this case k(T)= k,-E,-/RT2 and, if
I, = foffki,gj(fb) d¢, then condition (14) is equivalent to

> kiEidi~0 (16)
as derived in Ruoff (2000). In Fig. 7, we show an

example of a temperature compensated system that
satisfies Eq. (16).
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Fig. 7. In this figure we have chosen the activation energies E; so that
the Leloup-Goldbeter model for Neurospora (Leloup et al., 1999) is
temperature compensated at 7' = 283. The relation between k; and T is
given by Eq. (15). We see that near to 7' = 283 the period changes
slowly with 7" but further away it changes more rapidly. Biological
oscillators have a more global temperature compensation where the
period is roughly constant over a more substantial temperature range.
Thus we refer to this as global temperature compensation and the sort
seen in the figure as local temperature compensation. We will discuss
how to achieve global compensation in a later paper.

At first sight entrainment by temperature and
temperature compensation can appear at loggerheads.
We can, however, see that this is not the case. Robust
entrainment requires that @(¢) = fdfm S 1 period(@) da
does not have a small amplitude so that the stable
solution to @(¢) =t — L is relatively robust while
temperature compensation requires that
for S 1 perioa(#) dp ~ 0. Therefore these are perfectly
compatible goals.

5.3. Robustness to parameter perturbations

If we require that the period or other output variable
0Q; is relatively stable to perturbations of the parameter
k; then by Eq. (9) we require that the integral over a
complete cycle in Eq. (9) of the IRC is close to zero:

| fuo@as~o (17

By the linearity of Eq. (9) we can apply this to study
mixed perturbations of many parameters. Robustness to
sustained parameter perturbations requires that all IRCs
must have very small integral as in Eq. (9). We can
ignore those IRCs that have small amplitude because
they will therefore have small integral. However, by the
above, some IRCs must have large amplitude for
entrainment to be possible and, as in the models
considered in Table 1, for some other parameters k;
and output quantities Q; the IRCs will have large
amplitude because of the nature of k; and Q; (e.g. for the
effect of phosphorylation and degradation rates on
period). It is widely thought that there is a strong
evolutionary advantage to robustness, so selection may
be expected to change the system so as to balance the

large amplitude IRCs so that their integral is small. This
provides a significant number of evolutionary goals.

5.4. Output pathways amplitudes and phases

We consider a particular output pathway driven by
the molecular species whose level is given by x;(¢). The
change in the level of x;(¢) at t = #y produced by a small
change in the parameters can be calculated directly from
the IRCs f. 0 where Q; = x;() via Eq. (9).

If we want to track the phase s of the minimum or
maximum of x;(¢) we can proceed as follows. The phase
s = s(k) satisfies x;(s) = 0 or equivalently g;(s, x(s), ko) =
0 where x; = g,(t,x,k), ¢ = 1,...,n is the system under
consideration. Differentiating this relationship with
respect to k; and solving for Os/0k; gives

Os _ agz agz agt
a_kj ( E)x g;) ( Z Oxy

Oxy Gx{, Ox; 0g;
oxel i 18
[axf, ok; +6k,} +ak,>’ (18

where x° is the initial point on the limit cycle that is the
initial condition. In this expression derivatives of g; and
g, are evaluated at x = x(so,k¢), s =50 and k = ko,
derivatives of x; are evaluated at x = x°, s = s, and
k = ko, and the derivatives of x? at k = k.

The derivatives axg/ax? are given by the matrix
solution Y(f) of either Eq. (B.3) or Eq. (B.14) in
Appendix B and those of 3xY/0k; are given by
integrating the IRC f}, o where x” is the point on the
limit cycle at the starting phase.

5.5. Robustness to stochastic perturbations

It is worthwhile considering this in the context of the
large Q limit where Q is the number of molecules
involved in the clock (Gonze et al., 2002). In this limit
the fluctuations about the limit cycle are normally
distributed with zero mean. After N cycles of the period
T the projections of these fluctuations onto the direction
of the limit cycle (i.e. the fluctuations in the time to
complete N oscillations) have a variance that is o> =
N /aQ where o is calculated according to the prescription
in Gonze et al. (2002).

The projections onto the eigendirection that are
transverse to the limit cycle (the directions z;(f) of
Section B.4) have a variance that is O(|pj|2) where p; is
the corresponding eigenvalue. It follows from this that
one can often reduce the effect of stochastic perturba-
tions by reducing the eigenvalues. However, this also
reduces the flexibility of the system. Therefore, evolution
must trade off these two effects or come up with
different ways of counteracting this stochasticity.
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6. Discussion and future prospects

We have presented an analysis of key evolutionary
aims of circadian clocks such as robustness to perturba-
tions, temperature and pH compensation, appropriate
period, robust entrainment by environmental signals,
and correct phase relationships for output pathways. It
is widely believed that there is selective pressure for each
of these targets. We have discussed the characterization
of each of these targets in terms of IRCs (see Table 3).
These IRCs are relatively easy to calculate and we have
provided software to do this on our website. We have
discussed in detail the mathematical theory behind IRCs
and described in detail how they can be computed
numerically. The underlying perturbation theory for
periodic orbits is classical but we give a new way of
looking at this which is particularly useful in the context
of circadian rhythms. Our analysis of the mathematical
characterization of these aims in terms of the tuning of
output quantities expressed in terms of IRCs is
summarized in Table 3.

The IRCs for period give accurate approximations of
PRCs for environmental pulses with a broad range of
durations and intensities via Eq. (9). We have explained
the mathematical theory underlying this results in
Appendix B (e.g. in Section B.5). This can be used to
study entrainment by environmental signals such as light
or temperature.

We find that robust entrainment requires that the
appropriate combination of IRCs for the pathways
involved in the environmental input has large amplitude
and that the circadian correction L — 7 is appropriate to
ensure a robust stable fixed point of the mapping F given
by Eq. (13). On the other hand properties like
temperature compensation require that the IRC for
temperature, which is a linear combination of basic
IRCs f. perioa 18 balanced in the sense of Eq. (14). A
similar argument applies to compensation for sustained

Table 3
Summary of how different properties are characterized by IRCs

variations of other environmental components such as
pH. Thus we see that the conditions for robust
entrainment by an environmental variable such as
temperature and compensation for that variable are
independent and perfectly compatible. Stability of key
output variables with respect to parameter changes is
also characterized by Eq. (17). This suggests that for key
outputs Q; it will be necessary for evolution to roughly
balance (in the sense of Eq. (17)) those IRCs which have
large amplitude because otherwise these outputs will be
unstable to variations in the parameters. For example, if
Q; is period and f}, o has large amplitude and is far
from balanced then sustained variations in k; are likely
to change the circadian correction sufficiently to destroy
entrainment (see Fig. 6 and Eq. (13)). The conditions for
correctly tuned output pathways and the robustness of
this correct tuning also involve combinations of the
IRCs.

Since we can express the various evolutionary aims in
terms of IRCs we can determine to what extent they are
independent of each other. This requires an analysis of
which IRCs are involved, the nature of the condition on
the IRC and the extent to which the IRCs are linearly
independent of each other. However, it is not difficult to
see that in general a large number of the most important
evolutionary goals discussed here are independent. It
therefore emerges that there are multiple independent
characteristics that we can expect will confer a selective
advantage and moreover that should be accessible to a
process of small random perturbations and selection
provided the flexibility of the clock is large enough. It
seems reasonable that, there will be more than 5 or 6
such characteristics that are of key importance and
therefore that the flexibility needed to achieve this will at
least require a loop complexity equivalent to the most
loop complex models in Table 1.

In order to simultaneously tune ¢ of the character-
istics that are of key importance it is necessary to be able

Evolutionary aim

Mathematical characterization in terms of IRCs

Setting period

Entrainment

PRC:s for short disturbances of duration d¢

PRC:s for disturbances lasting for an interval S and starting at phase
Temperature compensation

pH compensation

Parameter stability for k;

Phase relationships for x;(¢)

change in period Q; = t due to change Jk; is Jk; ,/gfk,»,pemd(d)) do
stability and phase determined by V() = —ok;(I) flfwfkhpemd(@ do
when input pathway modulates k;

PRC Q; approximated by —6k; - f, yerioa(¢) d¢p when input pathway
modulates k;

PRC Q; approximated by —0ki(1) [} 1. yerina() db

0= jng,Q/(¢)d¢ ~0

0= jgfpn‘gj((f’) dp~0

Q= fifrg(®)db~0

uses ./'“’_’.i,iy,(s)

Each evolutionary aim can be described as tuning one or more particular output variables Q;. Note that in the case of entrainment and PRCs, @, is

actually a function rather than just a number.
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to move the appropriate output vector Q independently
in ¢g dimensions by using small changes in the
parameters. However, even if one can freely move lots
of parameters it does not follow that by doing this one
can freely move the output Q with the same dimension-
ality. Movement of Q in certain directions is highly
resisted for the clock systems studied. Seen another way:
if the parameter changes are random and uncorrelated
then the movement produced in Q will tend to be highly
correlated with the changes strongly concentrated in just
a few dimensions. The number d of these dimensions is
given by the flexibility dimension that we have defined.
We have shown that this flexibility dimension is given by
the singular values of the matrix M* and have rigorously
related the two approaches to flexibility.

We have provided strong evidence that the flexibility
dimension d is smaller than the number of parameters
by an order of magnitude and roughly proportional to
the loop complexity of the system. Thus evolution will
only be effective in reaching multiple independent
targets if the flexibility dimension d of the system is as
large as the number of targets. If the system is
constrained so that it can only reasonably move in a
small number of dimensions then it will only be able to
tune a small number of targets.

It follows that there is likely to be a strong selective
advantage in increasing loop complexity and strong
selection for mechanisms that enable this such as gene
duplication and protein variation. Mechanisms and
divergence that may increase complexity are found in
the circadian clocks of Neurospora (Garceau et al.,
1997), Drosophila, Arabidopsis (Eriksson et al., 2003)
and the mouse (Daan et al., 2001; Zheng et al., 2001;
Oster et al., 2002). In addition, we have argued that the
selective degradation of protein products also aids
flexibility and therefore that we would expect to find
that not all protein products are degraded at the same
rate but that degradation is concentrated on selected
products in certain modified states.

Since one can understand the lack of flexibility in
terms of properties of dynamical systems one can make
some estimate of the range of applicability of these
ideas. It therefore seems rather clear that the ideas
discussed will apply to a broad range of dynamical
processes of such regulatory networks and not just to
oscillating systems. For example, similar ideas should
apply to the propagation of perturbations along path-
ways, multistable networks that act, for example, as
switches and networks of transcription factors that
determine spatial patterning.

Acknowledgments

We are grateful to Hugo van den Berg, Sanyi Tang,
Ozgur Biringen-Akman and Isabelle Carré for useful

discussions on these topics. Financial support was
provided by the BBSRC and EU (BioSim Network
Contract No. 005137). Correspondence and requests for
materials should be addressed to: D. A. Rand,
University of Warwick, Coventry CV4 7AL, UK, email:
dar@maths.warwick.ac.uk

Appendix A. Proofs of results relating flexibility and
singular values

A.l. Proof of Theorem 2

Let M’ = UDV' be the singular value decomposition
of M’ where D = diag(s,...,0,) and we order the g; >0
so that g, >0,> - >0, Let u; and v; denote, respec-
tively, the columns of U and V corresponding to o;.
Then M'-v;=ou; and therefore, if v=7} au;,
u=M'-v=73aou;. Moreover, since the v; (resp. u;)
are orthonormal, ||v]> = Zja_? and |lu|®> = Zjajaj?. It
follows immediately from this that R* = g;.

Every 60 in the image of M’ can be written as ) .a;u;
where the sum is over those j where o; #0. Then 160> =
>_,a. Moreover, if on =307 au;, M'-on=20Q. If
this sum is only over those j with g;/g| > ¢ then if follows
that a?||on|> = Zj(ajol/ajfsg_zzjaf =¢2160|* and
therefore 6Q is in the cone C(g k). Therefore, since,
R* = g1, C(g, k) contains the vector space W spanned by
the u; with o;/0, > e.

Now suppose that W is a linear subspace contained
in the cone and of maximal dimension. Letn: W, — W
be the projection

7'5( E Clej) = E ajuj.
J Jioj/o1>e

The kernel of n consists of vectors of the form 6Q =
>_;4u; where the sum is only over those j such that
0<gj/o1<e. Let on = (a;/a;)u; so that M" - on = 6Q.
Then, since 0%||511||2>s‘ 0|1 the vector dQ is not in
the cone. Since W, is in the cone it follows that kern =
0 and therefore that the dimensions of W, and W are
the same. Thus the dimension of W, is equal to the
number of singular values with ¢;/01 >e¢.

A.2. Proof of Theorem 3 relating the principal
components, the SVD of M' and the cone C'(¢,k)

As above M’ = UDV" is the singular value decom-
position of M’, u; denotes the j’th column of U, m =
dimoQ and D = diag(oy,...,0,) is the matrix of
singular values (see Section 3.2.1).
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Lemma A.1. If the components 5175-[) of the vector on®
are independent with variance X* then in the limit
N — o0, vi > Xo; and ej — u;.

Proof. Firstly we note that the principal components
(ej, v;) associated with Y are given by the singular value
decomposition 4 = U,D 4V, of A. In fact, the ¢; are the
columns of U, and v} = «7/N where the k; are the
diagonal elements of D,4. This follows because
Y=N"'44"= U,N"'D)U,.

Now we show that as N — oo, v; = 2o; and ¢; — u;.
Let us write the vectors 60 in the basis given by the
vectors v; which are the column of V' above so that

on® =3 a"%;. Then M’ -on® = MVa® = UDa®
where a(/") 1s the (column) vector (a(lf),...,afﬂ[))’ ,
m = dim 50.

Let a be the matrix whose £th column is a. Then the
matrix A4 above is given by UDa so that Y = UDCDU’
where C = N~'aa’. The entries of this latter matrix are
the correlations C;j = N™'S° a f[) ) Therefore, if we
assume that the components 61" of the vector on® are
independent with variance ~> we have that in the limit
N — oo, C = X*I where I is the identity matrix. This
follows because if a= X -on with X an orthonormal
matrix (as is the case here), then N~ IZ[ ([) j([) — 052
as N — oo. Thus, as N — oo, Y — UZZDZU’ so that
e, — ujand v, - Zo;. O

Now we relate all this to the cone C'(g, k) defined in
Eq. (5).

Lemma A2. Ifv=>b u] is any vector in the image of

M’ and the on'© and 5Q(€ are as in Lemma A.1, then
lim N~ Z:(éQ(f) )P =232 Z b}
j
and
Jim N~! Z(éQ“) 2000) = 32 Za}.

Proof. As in the previous proof let o0 =", a(g)v] sO

that 60 = M- oy =y, a]a 'u;. Then
N~ Z(éQ(f) v) = Zazbzcjj + Za]akb biCik,

j#k

where Cy = lz[a]([) (s the correlation discussed in
the proof of Lemma A. 1

The first part of the lemma then follows from the fact
that Cjx — 02 as N — oo. The second part follows
immediately from this fact and the expression for 6Q
in terms of the a(-f) . O

Corollary A.3. A vector U_Zbuﬁ lies in the cone
Ce. k) if and. only if (5,075)) /S0 (07 > 2

The proof of Theorem 3 follows from this.

Proof of Theorem 3. The proof is along the same lines as
that of Theorem 2. One firstly uses Corollary A.3 to

show that the vectors u; with o7 2> ¢?E are contained in

the cone. Then one considers a linear subspace W, in
the cone of maximal dimension and the projection 7 as
in the proof of Theorem 2. Then the kernel of 7 consists
of vectors of the form 60 =3, a,u, where the sum is
only over those j such that 02 <&*Z. For such a vector

(0)
R(%Q: m Z[(SQ ,5Q(£) 2
Voo 0017 100
lim Z20QI 2Ny DY 00, w)?
t

=(Sa9) [ (59)<

Thus the vector dQ is not in the cone. Since W is in the
cone it follows that kerm =0 and therefore that the
dimensions of W, and W are the same. [

Appendix B. Perturbations of the limit cycle and proofs
about IRCs

The first step in this analysis is to calculate the linear
part of the perturbation Jy of the periodic orbit when a
parameter is changed. This is a result of standard theory
(see Hartman, 1964) and related formulas are discussed
in Hwang et al. (1978).

B.1. Perturbations and IRCs: Unforced (free-running)
case

We consider the differential equation

V=g, k), (B.1)

where y = (yy,...,»,) € R" and k is a parameter. We are
assuming that the equation is autonomous and hence
unforced, or forced with a forcing that is constant in
time. For clocks this corresponds to the case where the
environmental forcing by light or temperature is un-
changing in time.

We assume that Eq. (B.1) has a attracting periodic
solution y = y,(¢) with period 7 =ty when k = ky. We
consider how this solution changes as k is varied. To do
this we follow the treatment in Hartman (1964).

B.1.1. Setting up an appropriate coordinate system

We fix a point y, = 7,(0) on the periodic solution and
consider a small (n — 1)-dimensional hyperplane X
which meets the periodic solution at the point y, and
is transversal to the solution. For example, one could
take 2 to be the plane normal to the tangent vector
to the periodic solution at y,. Near to y, there
is a coordinate system x = (xi,...,x,) such that (a)
x € X if and only if x; = 0, (b) in this coordinate system,
Yo=0=(0,...,0) and g(yy, ko) = (1,0,...,0). Let the
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differential equation (B.1) in the new coordinate system
be given by

X =f(x,k) (B.2)

and the periodic orbit be given by x = y,(f). We consider
solutions Y (¢) = Y(¢,x9,k) of the matrix variational
equation

X Zf(xa k)a Y = A(l) : Y:

x(0)=x9, Y(O0)=1.

(B.3)

Here x(f) = x(z, xo,k) is the solution of X = f(x,k)
with initial condition xy, Y(¢f) = Y(¢,x0,k) is a nx n
matrix and A(z) = A(t,x,k) is the Jacobian matrix
of partial derivatives (0f;/0x;) evaluated at x = x(¢)
and k and the initial condition for this solution is
that Y(0) is the identity matrix /. If for the matrix Y (z¢)
the eigenvalue 1 is simple then, for k near kg, system
(B.3) has a unique periodic orbit x = y,(z) near
x = p(2). This limit cycle varies smoothly with k. Let
(k) be the period of y, and let xo(k) be the point where
) intersects .

Firstly we ask how the period and the point xy change
as a function of k;. It is not too difficult to find their first
derivatives which are given by the following equation:

[af/ak,-

i —di y
axo/aki], = (o diagl0 L) (B.4)
=k

X Y (50) /0 Y@ by, (B.S)

where Y(¢) stands for Y (¢, xo(ko), ko) and b;(¢) is Of /Ok;
evaluated at x = y,(¢) and k = k.

Let &(t,x,k) denote the solution of the differential
equation with initial condition xy = x¢(k). To obtain
this equation we note that the point x(k) satisfies
E(t, xo(k), k) = xo(k), differentiate this equation with
respect to k and solve for the left-hand side of Eq.
(B.5). Then we use the results of Hartman (1964)
expressing the derivatives 0&/0x¢ and 0&/0k; in terms
of Y(¢).

The limit cycle is given by (1) = &(¢, xo, k). Thus

0 6§ axo af
@ yk(t) = axo ( > Oak) ([ X(),k)

The term 0¢(7, Xo,k)/0xy is given by Y(z) because it
satisfies Y = A(¢)Y; 0xy/0k is given by Eq. (B.5); and
the last term is given by

! 0
Vo) [ Y@ b1 = 5 o

because it satisfies the equation ¥ = A(f)Y + bi(¢).
From this one can show that, if the change in 7y,
arising from a change ok in k is Oxy - 0k = >_,(Oky); - dki,

then
©y); = — Y(Oma(Y (v) — diagl0, 1,,-1])""
x Y (x0) / " Y () bid)do (B.6)
0
+ YO / Y() " bi(d) do, (B.7)
0
where 1 (x1,...,x,) = (0,x2,...,X,).

Thus if we only change the parameter value between
¢, and ¢, then the change in the limit cycle and its
period is given by

$2
op(1) = Z5ki : /<1> fropi(d)dp + O 5k (B.8)

and

)
ot = Z 5k’ ' /¢ fkl-,period(d)) dd) + 0(||5k”2), (B9)

where
Fropd( @) = — Y(2) - my(Y (10) — diag[0, 1]
x Y(10) Y (¢) "' bi(d) dp
+1,' (1) / I Y(0) 'bi(0)do
0
and

fkl-,period(d)) = TC](Y(‘L'()) — dlag[O, In—l])71
X Y(10) Y(¢)~'bi($)de. (B.10)

Definition B.1. 1 . (¢) and fy. ,..i0q(¢) are called the
universal IRCs for unforced systems because all the other
IRCs can be calculated from them.

We are now in a position to prove Theorem 6 for
unforced systems but firstly recall the definition of the
normalized limit cycle j given in Section 3.2.2. Since
(1) = &2, xo(k), k), 5, (1) = E(tn(k), xo(k), k) and there-
fore

61 65 0

0
0:(1) = ok, . ko)’k(f) ak ik, + % 7x(t70)
ot
= I‘E f(Vo(Tol) ko) + = Gk 7i(t70)- (B.11)

The last term is given by Eq. (B.7) above. Thus we see
that

¢
90 = 0k [ T @dg+ 00K, (1)

where f . (®) = f1., (D) + tf Qo(t01). k0)f k. period(®)-

Proof of Theorem 6 (for unforced systems). The changes
0Q; caused to the output variable Q; by variations dok; in
the parameter k; are linear functlons of the change 7 in
the period and the change 67(¢) of the limit cycle. Let us
write this relationship 0Q; = L; - (67, 0p). It follows
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immediately from Egs. (B.8), (B.9) and (B.12) that there
is a function f o satisfying Eq. (9). The fact that it is
unique follows because it satisfies Eq. (9) for all
appropriate ¢, and ¢,. O

B.2. Entrained forced case

The case where the system is entrained to the periodic
forcing is more straightforward. Firstly, we do not have
to worry about changing the coordinate system as
above. Secondly, we can ignore changes in the period so
long as the system stays entrained.

We consider the system

V=g, y,k), (B.13)

where y = (y,...,7,) € R", k = (ky, ..., k) is the vector
of parameters and g(¢ + 1,y,k) = g(¢,y, k). We assume
that Eq. (B.13) has a attracting periodic solution y =
vo(¢) with period =19 when k =ky. As above we
consider solutions Y(¢) = Y(¢,x0,k) of the matrix
variational equation

Y=A®1®)-Y, »0)=x, YO)=I.

(B.14)

Here Y(¢) = Y(¢,x0,ko) is a n x n matrix and A(z) =
A(t, x, k) is the Jacobian matrix of partial derivatives
(0f';/0x;) evaluated at ¢, x = x(¢) and k = ko. The initial
condition for this solution is that Y(0) is the identity
matrix /. If the matrix Y(z9) does not have 1 as an
eigenvalue then, for k near kg, the system (B.14) has a
unique periodic orbit y = y,(¢) near y = y,(z). Moreover,
these periodic orbits satisfy

y=9tyk),

= —(Y(x))—D)™" - Y(r0)

0
7%(0)
Ok; k=ky

P
X / Y(s)~! - bi(s)ds. (B.15)

0
Here the vector b;(s) is Of /Ok; evaluated at y = y,(r) and
k = ko. This is proved in a similar fashion to the proof
for Eq. (B.7) above.

For the universal IRC in this case we only have to
consider fy.. (¢) since period variations are not
relevant. In this case, if the change in the parameters
is only applied between ¢, and ¢,, the change in the
limit cycle (as in Eq. (B.8)) is given by

()
0 =0k [ 9186+ 000K, (B16)
where
Foe®) = = Y0 (mY0) = 17 V) V0 '0(0)

415! /0 t Y(0) 'bi(0) do>. (B.17)

Proof of Theorem 6 (for forced systems). The proof
proceeds in a similar fashion to the unforced case. [

B.3. Calculation of the circle perturbations

We now consider the normalised limit cycle . The
partial derivatives of this are given by Eq. (B.11) where,
for the forced and entrained case, the first term is zero.

To approximate the linear operator M*: ok —
(69,0t) one can proceed as follows. In terms of the
quantities 0;(¢) = 09,(#)/0k;l;—x, which are calculated
above in Eq. (B.11), the operator M* is given by

M* -5k = 5k; - 0;.

Thus if 0; is the vector given by (0;); = 0,(j/N), (where N
is a large integer), an approximation M) of M* is
given by

MM . 5k = Z Sk; - 0;.

This gives a matrix representation for M™) in terms of
the basis vectors ;. This approach corresponds to
approximating 67 = 67(f) by the vector Jy whose jth
entry is 07(j/N).

We have developed a software tool that rapidly
calculates the quantities 6;(¢). Using the above results
this enables us to compute M™* and its singular value
decomposition to arbitrary accuracy. An example of
such a calculation is given in Fig. 3.

B.4. Perturbations and Floquet multipliers

Let py, ..., p; be the eigenvalues of Y(7y) and suppose
that p, has multiplicity n; so that n; +ny +--- +ni = n.
For each ¢ there are vectors
20 =00),..., 20 = 2{0(r), which are periodic in 7
with period 7y, such that each of the following are
independent solutions of

Y=A()-Y
in Eq. (B.3) or (B.14)

(B.18)

o o M 0,0 o/
1 m! 2 (m _ 1)| m m+1 t ’
m=0,1,...,n,—1).

Every solution of Eq. (B.18) is a linear combination of
these. For clarity consider the generic case where the
eigenvalues are all simple (i.e. n, = 1). Suppose that
P1.-..,p, are real and p, ,...,p, are complex and
p; = €%, Then there are vectors z(?), j = 1,...,r and
pairs of vectors z;(f) = (z](-a)(t), z](-b)(t)), j=r+1,...,m
each periodic in ¢ with period 7y such that every solution
of Eq. (B.18) is a linear combination of the functions
zi(t)e™ (j=1,...,r where %; is real) and zj(-a)(t)e“/tcos 0;t
and z](b)(t)e“f’sin 0;t G=r+1,...,n where y; = a; + i0;
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is complex). This means that the matrices Y (¢) map the
vectors zj(0) to z(¢) for j=1,...,r and, if Vj(tg is the
two-dimensional space spanned by z](“)(t) and z](- )(t) for
j=r+1,...,n, then Y(¢) maps V;(0) onto V;(#) and
acts as a rotation through 0;¢ with respect to the given
basis. It follows from this that

= Z(pm - 1)7lzm(t)

/€=k0 m

t+71
y / e+ 0-Dp, () do,
t

where bi(t) =3, bim(t)zn(t) and if p, is real the
summand has the obvious meaning while if it is complex
then the summand should be interpreted aEpropriately:
zn(?) is the complex vector Z](-” )+ iz](- ) (0, bim(t) =
B (1) + ib) (1) where b;,(f) is the projection of by(r)
into V,,(¢) and the summand is the usual vector in V,,(¢)
obtained by taking real and imaginary parts. Each y,, is
negative and if it is not too close to zero then we can
approximate the integral in Eq. (B.19) by 7,,'5;m(7). The
error terms are O(y,,>) or O(e~"%n). Thus we can write

~ Z (pm - 1)_12777([)

k=kq m:y,~0

t+1g
x [ et g g
t

bix(1)
ki ~0 (pm - I)Xm

0
G—k,;yk(t)

(B.19)

0
a_kiy/c([)

+ Zm(1). (B.20)

From this we see that in the direction of the eigenspace
corresponding to y,,, the magnitude of the perturbation

is O(1/11m))-
B.5. Proof that IRC for period gives a PRC

In this we use the notation of Section B.1.1. Thus we
consider system (B.2) given by x = f(x, k). The point y,,
the cross section X and the coordinate system x =
(x1,...,x,) are as in Section B.1.1. We let 7; denote the
projection m;(x) = x;. Since the vector field at y, is
(1,0,...,0), it follows that if x(¢) = y,(?) is the periodic
orbit (x(0) = y,) then 7;(x(2)) = t + O(£).

Lemma B.2. Suppose that &(t,x,k) is the flow of the
dynamical system (B.2) so that {(t, v, ko) is the periodic
orbit. Then the phase of &(to,yy(k),k) equals o=
11(E(e(k), yo(k), k)) up to an error which is O(c?) and

0o Ot

Ok; Ok;’

Proof. Since &(t(k), yo(k), k) = yy(k) we have
0 Qyp , 0 _dyy 0L Ot

dy, Ok; 0k; ©Ok; Ot Ok;’

where the partial derivatives of ¢ are calculated at
(t,y,k) = (10, y9(ko), ko) and the other partial derivatives

are calculated at k = k(. Thus

oo 0
ok = 3 M0, ) = m (
_ (9 _0¢ Ot _ 0ot
T M\ok, T ot ok) T T ok

since m;(0y,/0k;) =0 and 0£/0r = (1,0,...,0) so that
n(0¢/0t) =1 and
71((02/30) - (9t /ok)) = (@t /k:) - m(DE/20). O

oy, 2
6y0 ak, ak,

Appendix C. Numerical calculation of IRCs and
intelligent orienteering in parameter space

The calculation of the IRCs was performed in Matlab
and we will make available via our website www.math-
s.ac.uk/ipcr/ a Matlab software tool that we have
written that allows one to analyse clock models given
by differential equations. In particular this tool can
calculate the IRCs fk,-,Q,-’ the operator M* and the
principal components of Sections 3.4.2 and B.3. It can
also be used to make user-specified changes to the
outputs by varying parameters, and to integrate the
equations and compare the forced and unforced
behaviours.

The calculation of IRCs is straightforward using Eq.
(B.8) or Egs. (B.17) and (B.10) except for one issue. In
order to obtain IRCs given by Eq. (B.8) or Egs. (B.17)
and (B.10) we need to calculate the matrix Y(s)~' and
unfortunately, since ||Y(7)~'|~expAt, where A is
typically quite large, the computation blows up rather
quickly as ¢ is increased towards to. This issue is
addressed in Hwang et al. (1978) and we used similar
ideas to overcome the blowup.

The results of this paper can also be used to perform
intelligent orienteering or tuning in parameter space to
achieve certain user-required changes in the phenotype
of the clock model and we have incorporated such an
approach into the software tool mentioned above.
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