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Abstract

In this paper, we present the mathematical details underlying both an approach to the flexibility of regulatory networks and a

analytical characterization of evolutionary goals of circadian clock networks. A fundamental problem in cellular regulation is t

understand the relation between the form of regulatory networks and their function. Circadian clocks present a particularl

interesting instance of this. Recent work has shown that they have complex structures involving multiple interconnected feedbac

loops with both positive and negative feedback. We address the question of why they have such a complex structure and argue that

is to provide the flexibility necessary to simultaneously attain multiple key properties of circadian clocks such as robust entrainmen

and temperature compensation. To do this we address two fundamental problems: (A) to understand the relationships between th

key evolutionary aims of the clock and (B) to ascertain how flexible the clock’s structure is. To address the first problem we us

infinitesimal response curves (IRCs), a tool that we believe will be of general utility in the analysis of regulatory networks. T

understand the second problem we introduce the flexibility dimension d, show how to calculate it and then use it to analyse a rang

of models. We believe our results will generalize to a broad range of regulatory networks.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Current descriptions of the molecular circadian clock
have a negative feedback loop with delay at their hear
(Young and Kay, 2001; Johnson et al., 2003; Roenne
berg and Merrow, 2003). Indeed, a single such feedback
loop with a very simple structure will produce robus
oscillations (Goldbeter, 2002a,b). It is therefore perti
nent to ask why current understanding of the regulator
networks of these clocks suggests that they almos
universally have a much more complicated structur
with multiple interlocking feedback loops with bot
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negative and positive feedback. Several authors hav
written about the reasons for this complexity (Johnso
et al., 2003; Roenneberg and Merrow, 2003; Smolen e
al., 2001; Cheng et al., 2001; Cyran et al., 2003; Glosso
et al., 1999; Lee et al., 2000; Ueda et al., 2001; Preitner e
al., 2002; Reddy et al., 2002; Daan et al., 2001; Albrech
et al., 2001). The primary reason (though not the onl
one) suggested is robustness either to paramete
perturbations or to stochastic noise. However, it ha
not been shown that the observed structure leads t
robustness and there is no convincing explanation o
why one would expect this. Of course, it is likely tha
some of the complexity arises from specific needs of th
organism in question. Nevertheless, it is important t
consider whether there are general principles behind th
form of the structures observed. That importance i
reinforced by the fact that the disparate clock mechan
isms maintain biological rhythms in a very simila
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Table 1

A list of the models considered together with the number of state

variables n and the number of parameters s

Model n s

Leloup et al. (1999) Neurospora 3 10

Leloup et al. (1999) Drosophila 10 38

Ueda et al. (2001) Drosophila 10 55

Leloup and Goldbeter (2003) mammal 16 53

Forger and Peskin (2003) mammal 73 36

The ratio of s to n is anomalously small for the Forger–Peskin model

(Forger and Peskin, 2003) because in it several groups of parameters

are assigned the same values and are regarded as the same parameter.
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fashion in all organisms and seem to be a product of
convergent evolution (Young and Kay, 2001). In this
paper, we address this question by considering differ-
ential equation models of the clock. We show that clocks
involving a single loop are inflexible in a precise sense
and that the degree of flexibility of a clock network is
related to the complexity of the loop structure. Then we
present an analysis of why this flexibility is important
for the functioning of the clock.

Circadian oscillators are entrained by the daily cycles
of light and temperature (Johnson et al., 2003).
Entrainment by light is generally considered to work
by modulating a small number of particular parameters
of the regulatory network such as certain degradation or
expression rates. For temperature the mechanism is less
clear. It is generally assumed that temperature fluctua-
tions affect many more rates and it is unclear how these
combine (Rensing and Ruoff, 2002). For entrainment by
light or temperature to work it is therefore important
that a clock is sensitive to fluctuations in either of these
environmental factors. On the other hand, an important
property of many clocks is that key characteristics such
as period are not sensitive to sustained changes in, for
example, temperature (Johnson et al., 2003). To analyse
the relations between these possibly conflicting goals we
introduce a tool, infinitesimal response curves, which
allows us to characterise the stability and entrainment
properties of the clock.

The phenotype of the clock is largely determined by the
set of characteristics describing, for example, how it is
entrained by light and temperature, the phase relation-
ships between the protein products, the coordination of
output pathways, which phases (e.g. dawn and dusk) it
can track, its response to both sustained and stochastic
changes in environmental variables such as temperature
and pH and its robustness to internal fluctuations of the
molecular environment of the cell. These characteristics
are largely set by the network structure of the clock and
the values of the various parameters (such as rate
constants) describing the quantitative structure of the
interactions. Thus we can regard evolution as acting on
both the network structure and the parameters by small
changes, as revealed by the natural genetic variation
(Johnson et al., 2003) in Arabidopsis, Drosophila and the
mouse. Though larger changes occur such as deletion of
core genes, they do not seem to be maintained and thus
we do not consider them here.

Evolution will seek to simultaneously tune the multi-
ple and possibly conflicting characteristics of the sort
described above. To understand how this can be
achieved one first has to address two problems:
(A)
 one must understand the relationships between the
various characteristics (e.g. to what extent they can
be tuned independently and which of them are
strongly related);
(B)
 one must ascertain how flexible the clocks structure
is, i.e., how easy it is to simultaneously tune for the
multiple goals.
To address the first problem, A, we show that the key
goals can be expressed in terms of certain system
variables so that each goal corresponds to tuning one
or more of these variables to certain prescribed values.
Our analysis will show that there is a significant number
of effectively independent quantities that evolution has
to tune and one is able to determine which combinations
of parameters should be tuned in order to move towards
the realization of a specific circadian characteristic.

For problem B we introduce a measure of the
flexibility, called the flexibility dimension d, that is an
important quantity because it tells us how many key
output variables evolution is able to tune at any time
and in how many dimensions evolution can move the
system. We produce evidence that this flexibility is much
lower than one might expect from the fact that all clock
systems depend upon a relatively large number s of
parameters such as rate or coupling constants. For the
published models considered in Table 1, s ranges from 9
to over 50 and in reality the number of parameters is
likely to be higher. On the face of it the large number of
tuneable parameters suggests that there is a huge
flexibility to explore and optimize key characteristics
of the clock. However, our analysis shows that d is much
smaller than s, usually by an order of magnitude and is
roughly proportional to the loop complexity of the
network as described below.

It follows from the definition of the flexibility
dimension d that if there are q key independent
evolutionary target variables or characteristics, the
realization of these will be effectively impossible if d is
smaller than q. Thus there is a selective advantage in
increasing d to a value where the full range of key
evolutionary targets can be tuned. Since, our analysis of
problem A will indicate that the number q of essentially
independent evolutionary targets is relatively large, it
follows that for simple networks there is selective
pressure for increased loop complexity.
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These results suggest that, faced with the need t
address multiple independent goals, evolution will hav
used a strategy of decorating the minimal regulator
module with extra structure in order to obtain th
necessary flexibility.
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Fig. 1. A schematic representation of the discussion justifying the

approximation used to derive Eq. (1).
2. Key clock characteristics

The literature now contains a broad range of explicitl
molecular models for circadian clocks that are mathe
matically defined by differential equations (Goldbeter
2002a,b; Tyson et al., 1999, see Table 1). Differentia
equations provide the most appropriate framework i
which to address the questions we are concerned wit
here because the analytical tools such as IRCs and th
theoretical ideas around flexibility are most readil
developed in this context. Our analysis is not specific t
any of these models but in Table 1 we list a number o
them that will be used to illustrate the points we make
All these models display sustained oscillations in th
appropriate parameter regimes and are entrained b
light–dark cycles of appropriate intensity. This sustaine
oscillation is described by a (stable) limit cycle.

There is a relatively large number of key character
istics of clocks. In this section we discuss som
important examples. In later sections we will show
how to describe these characteristics in terms o
infinitesimal response curves.

Clearly clocks must be robustly entrained by com
monly occurring environmental signals. The phase o
entrainment must be appropriate. These aspects mus
persist with the different environmental condition
arising during the course of a year. They should b
stable to commonly encountered environmental varia
tions such as those of temperature, pH, nutrition o
growth conditions. Because there is only a finite numbe
of molecules involved, perhaps even a relatively sma
number, the clocks are intrinsically stochastic. There
fore, the clock should be adjusted so that the period an
phase relationships are relatively robust to thes
stochastic fluctuations and the clock should function
reliably in the presence of internal noise due to th
fluctuation in the molecular environment of the cell. I
has been suggested that, depending on the organism, th
clock is regulating the expression of several hundred t
more than a thousand genes (Harmer et al., 2000). It i
therefore important that appropriate phase relationship
for the protein products driving output pathways ar
maintained. These phase relationships should also b
robust to the sort of perturbations discussed above.

2.1. Robust entrainment by environmental signals

The most basic requirement for a clock is that th
relevant 24 h environmental cycles should entrain it in
robust way. Moreover, this entrainment needs to b
maintained in the face of perturbations such a
environmental and stochastic fluctuations.

To clarify the issues associated with robust entrain
ment it may help to consider an approximate model o
the clock which is valid when the limit cycle g0 of th
clock in darkness (i.e. with no forcing) attracts nearb
orbits sufficiently quickly (Fig. 1). If this is the case, i
light–dark (L–D) cycles with a long enough dark period
the state of the clock at the end of the dark period wi
be close to a state on g0. Thus the Poincaré map of th
clock in L–D cycles maps a small neighbourhood of g
into another small neighbourhood of g0. If we therefor
mark each point on g0 by its phase f (0pfpt where t i
the period), the Poincaré map is approximated by th
map fn ! fnþ1 ¼ F ðfnÞ, where fn is the phase at daw
on the nth day and fnþ1 is the phase at dawn on da
nþ 1. See Figs. 1 and 2 for a schematic representation o
this construction and an example of what the mapping F

will look like. It is natural to consider the functio
FðfÞ ¼ F ðfÞ � f� ðL� tÞ where L� t is the circadia

correction, i.e. the difference between the length of th
day L and the period t of the oscillator in continuou
darkness. Then F can be regarded as a phase respons
curve and F has the following form:

fnþ1 ¼ F ðfnÞ ¼ fn þ FðfnÞ þ ðL� tÞ. (1

Another way of looking at this equation is as follows
consider a situation where light has a given intensity an
acts from dawn for S hours. Let FðfÞ be the phas
change associated with applying this light when daw
coincides with the phase f. If the phase at dawn is f
then at dusk it is fn þ S þ FðfnÞ. Therefore at the en
of the day the phase is given by Eq. (1).

The mapping F has a fixed point (F ðf�Þ ¼ f�) at f
provided Fðf�Þ ¼ t� L. The local stability of this fixe
point f� is determined by the slope of F at f�. If w ¼
jF 0ðf�Þjo1 then f� is (locally) stable (fn ¼ Fnðf0Þ !

f� as n!1 for all f near f�, where F n ¼ F � � � � � F

(n times)). Therefore this fixed point is stable provide
�2oF0ðf�Þo0. Entrainment corresponds to the exis
tence of such a stable fixed point f� and f� tells us th
phase of the entrained state.
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If we change parameters we can expect that both the
shape of the graph of F as reflected in F and the
circadian correction L� t will change. This will in turn
shift the point f� and may even cause the graph of F to
move above or below the diagonal fnþ1 ¼ fn so that
there is no such fixed point and the system looses its
entrainment.

Consider, for example, changes caused by a change in
temperature. Temperature T will presumably affect a
number of parameters ki which will be functions of T. It
follows that while the stable fixed point exists, its
position and its stability exponent w depend upon T:
f� ¼ f�ðTÞ and w ¼ wðTÞ. What is required is that f� ¼
f�ðTÞ and wðTÞ are roughly independent of temperature
T. This ensures that the entrainment persists
and remains stable in different temperature regimes.
If the shape of F does not vary much with para-
meter changes then we see from Eq. (1) and Fig. 2
that the crucial thing is that the period t does not
change too much with temperature. It is this that
has been observed experimentally (Rensing and Ruoff,
2002). This stability of the period under temperature
changes is referred to as temperature compensation.
We will consider these aspects further in Section 5.2
when we have introduced the tools we need for a
characterization.

This need for robustness of the phase of entrain-
ment and its stability would seem to apply under more
general situations; for example, in the face of general
parameter perturbations and intrinsic and extrinsic
stochasticity.
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Fig. 2. Representation of the mapping F given by Eq. (1).
3. Flexibility and evolutionary accessibility

All clock systems depend upon a relatively large
number s of parameters. These parameters, for example,
determine the functional descriptions of transcription,
translation, (de)phosphorylation, degradation and bind-
ing. They include all the rate constants and all the
maximum rates of transcription, translation and protein
modification. We denote these parameters by ki and
collect then into a vector k ¼ ðk1; . . . ; ksÞ. For the
published models considered in Table 1, s ranges from
9 to over 50 and in reality the number of parameters is
likely to be higher.

Varying the parameters k ¼ ðk1; . . . ; ksÞ causes output
characteristics Qj ¼ QjðkÞ to change. The outputs Qj we
consider will include quantities such as period, the
phases of the maxima and minima of mRNA and
proteins, the amplitude of these maxima and minima,
and the levels of mRNA and protein at prescribed
phases. They can also be functions rather than numbers;
for instance a phase response curve. All of the outputs
Qj we consider are functions of the limit cycle, i.e. you
only need to know the limit cycle to know the value of
the output Qj. Usually we consider several outputs Qj

simultaneously and then we collect then into a vector
Q ¼ ðQjÞ. For example, we may wish to simultaneously
tune these several outputs.

When the parameters are changed (usually by small
amounts) then the variation is denoted by dk ¼

ðdk1; . . . ; dksÞ (so that the new parameter values are
given by k þ dk), and the change caused in an output
such as Qj is denoted by dQj.

Each variation of the parameters from k1; . . . ; ks to
k1 þ dk1; . . . ; ks þ dks will cause the limit cycle to vary
and this in turn changes the vector of output character-
istics Q ¼ ðQjÞ by an amount dQ ¼ ðdQjÞ.

The variation dk ¼ ðdkiÞ is an absolute one in that the
size of the changes dki bears no relation to the size of the
parameter values ki that we are varying about. For the
models we consider the kis can vary over more than one
order of magnitude. It is therefore often more appro-
priate to consider the proportional variation in a
parameter which is given by dZi ¼ dki=ki. These changes
also have the important advantage of being dimension-
less. We say that such variations are proportional.

We could also do a similar scaling for the output
variations dQj. However, we do not do this because (a)
we assume that the output variables have been chosen so
that they are dimensionless and so that their sizes are all
of the same order of magnitude, and (b) because later we
will consider the case where dQ is the actual variation in
the limit cycle, in which case such a scaling is not
natural. One can usually ensure that (a) is true by
dividing the quantity Qi by an appropriate scale. For
example, rather than consider period p as one of the
output variables, take p=L where L is daylength.
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If the variations dki are small then the relation
ship between dk and dQ is approximately linea
and given by a matrix M ¼ ðMijÞ where dQj ¼P

iMijdki is the change to Qj caused by a chang
in k of dk. The numbers Mij are sometimes called th
linear sensitivities of the quantity Qj (Hwang et al
1978).

Thus dQ ¼M � dk. In terms of the scaled paramete
changes dZ, the change dQ in Q is given by

dQ ¼M � Dk � dZ, (2

where Dk is the diagonal matrix diagðk1; . . . ; ksÞ.
The large number of tuneable parameters woul

seems to suggest that there is a huge flexibility t
simultaneously explore and optimize key characteristic
of the clock such as those discussed above. However
even when the parameter variations can freely explor
all the parameter combinations, the direction of th
resultant changes in a given vector Q ¼ ðQjÞ of output
may be highly non-uniform, with the result that man
output changes are capable of being reached only wit
great difficulty or not at all. A good picture to have i
mind is of a round s-dimensional ball B of paramete
variations with small radius � centred on the bas
parameter value k. If � is sufficiently small, the image E

of B will be approximately an ellipsoid and the size of it
axes s14s24; . . . of this ellipsoid (ordered by magni
tude) may well decrease very rapidly. In this case mos
random variations in the parameters will produc
output changes dQ that are lined up with the axe
with the largest size si. Then if e is a unit vector i
such a direction and the N random parameter varia
tions produce output changes dQð‘Þ, ‘ ¼ 1; . . . ;N, th
correlationP

‘hdQð‘Þ; ei2

kek2
P

‘kdQð‘Þk2

will be relatively large. In fact, it will be proportiona
to the square of the magnitude of the axis. Anothe
way of looking at his is to say that output variation
dQ in the directions corresponding to the other axe
are inaccessible in the sense that they will requir
changes dk in the parameters for which the ratio
of magnitudes kdQk=kdkk is very small. These tw
ways of looking at it are essentially equivalent as w
show below.

The reader should note that these notions o
accessibility given below are applied in the linear regime
The changes dQ and the parameter dk needed to achiev
them are small even though in the inaccessible case th
size of dk may be much greater than dQ. We are no
considering the case where dQ is so large (an
inaccessible) that dk must be so large that the perturba
tion is outside the region where the linear approximatio
is accurate.
3.1. The approach via targeted parameter variations

We fix a vector Q ¼ ðQjÞ which represents a particula
set of outputs and firstly define the flexibility dimensio
in terms of Q. For example, Q might be the vector whos
entries are the phases of all the maxima and minima o
all mRNA and protein products and all amplitudes o
the oscillations in these products. Later, we will defin
the flexibility dimension which applies to the complet
set of output variables determined by the limit cycle.

A proportional parameter change dZ gives rise to
change in the outputs of dQ ¼M 0 � dZ wher
M 0 ¼M � Dk. For a given output dQ consider the se
of all proportional parameter changes dZ such tha
M 0 � dZ ¼ dQ. Let RdQ be the supremum of the ratio
kdQk=kdZk for dZ in this set, i.e.

RdQ ¼ sup
kdQk

kdZk
: M 0 � dZ ¼ dQ

� �
. (3

Since dQ and dZ are linearly related RdQ does no
depend upon the size of dQ but only on its direction.

For accessibility we require that RdQ is not too smal
because otherwise the given output change can only b
obtained by an excessively large parameter change
However, usually we do not want to measure accessi
bility in absolute terms but in terms which relate it to th
most accessible output. Thus we also consider

R� ¼ sup
dQ

RdQ.

Therefore, we fix a small number � and define th
accessible cone Cðk; �Þ to consist of all vectors dQ suc
that RdQ is greater than �R�.

If Q is scaled (i.e. all the Qi are scaled by the sam
amount) then RdQ and R� are scaled in the same wa
and therefore there is no change in the accessible cone
However, if each of the Qj are scaled by a differen
amount, there may be changes, but this is easy t
calculate and take account of.

Definition 1. The flexibility dimension d of the outpu
vector Q ¼ ðQjÞ is the largest dimension of any linea
subspace that is contained in the accessible cone Cðk; �Þ

Roughly speaking, if W is such a subspace then a
accessible vectors dQ are of the form wþ z where w is i
W and, compared to w, the magnitude of z is extremel
small (of order �). Thus, neglecting these relatively ver
small adjustments z, the set of accessible vectors is d

dimensional.

3.1.1. Singular values and the flexibility dimension

Consider a m� r matrix B whose number of rows m i
greater than or equal to the number of columns r. Ever
such B can be written as

B ¼ UDV t, (4
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where U is a m� r orthonormal matrix (UUt ¼ Im

and UtU ¼ Ir), V is a r� r orthonormal matrix and
D ¼ diagðs1; . . . ; srÞ is a diagonal matrix. This repre-
sentation is called the Singular Value Decomposition
(SVD) of B (Press et al., 1988). The elements
s1X � � �Xsr are called the singular values of B.
From (4) one immediately deduces that B � vj ¼ sjuj

where vj and uj are, respectively, the columns of V and
U corresponding to the singular value sj. The columns
vj of V with sj ¼ 0 provide an orthonormal basis for
the kernel of B ðvj � vk ¼ djkÞ and the columns uj

of U with sja0 are an orthonormal basis for the image
or range of B.

Since the relationship between scaled parameters and
outputs is given by dQ ¼M � Dk � dZ, we study the
singular value decomposition of M 0 ¼M � Dk. For this
matrix, r is the number of parameters s, and m is the
number of outputs dQj considered.

Theorem 2. The flexibility dimension d of the output

vector Q ¼ ðQjÞ is given by the number of singular values

sj of M 0 with sj=s14�.

This result provides an effective and practical way of
calculating the flexibility dimension as it is relatively
easy to compute M and hence M 0. The proof is given in
Appendix A (Section A.1).

If one wants to measure flexibility in absolute terms
where RdQ is compared to � itself rather than �R�, then
the dimension is given by the number of singular values
sj of M 0 with sj4�. In fact, the numbers sj give the
length of the axes of the ellipsoid E described above.

Note: In many cases of interest (and in all the
examples in Table 1), the sj decrease very fast. This
means that the dependence of the flexibility dimension
on � is relatively weak. For example, when the sj

decrease at least exponentially then the growth in d as �
is decreased is at most proportional to log 1=�.

3.2. The approach via random variations of parameters

Alternatively, we can define the accessible cone by
considering random variations where the output vectors
dQð‘Þ ¼ ðdQ

ð‘Þ
j Þ, (‘ ¼ 1; 2; . . . ;N), arise from a large

number N of variations dk
ð‘Þ
i ¼ kidZ

ð‘Þ
i where the

proportions dZð‘Þi are zero-mean independent identically
distributed random variables. We compare the variance
of the projection of the dQð‘Þ onto a given vector dQ

with the variance of the sizes kdQð‘Þk, i.e. we consider the
ratio

ðR0dQÞ
2
¼ lim

N!1

P
‘hdQð‘Þ; dQi2

kdQk2
P

‘kdQð‘Þk2
.

We then define the accessible cone by

C0ð�; kÞ ¼ fdQ : R0dQX�g. (5)
3.2.1. Principal components: the optimal orthogonal basis

for projecting the outputs dQð‘Þ

Suppose for example, that one is considering a
random set of perturbations and corresponding outputs
dQð‘Þ, ‘ ¼ 1; . . . ;N, as above. Consider any orthonormal
basis e ¼ ðejÞ of the space of output vectors dQ (kejk ¼ 1
and ei � ej ¼ 0 if iaj). Let

errkðdQð‘ÞÞ ¼ dQð‘Þ �
Xk

j¼1

ðdQð‘Þ � ejÞej

�����
�����
2

denote the size of the error if we approximate dQð‘Þ by its
projection onto the subspace spanned by the first k

elements of the basis. Then

errkðdQð‘ÞÞ ¼
X1

j¼kþ1

ðdQð‘Þ � ejÞ
2

because the basis is orthonormal. We seek to find the
basis e ¼ ðejÞ which for all kX1 minimizes

n2k ¼
1

N

X
‘

errkðdQð‘ÞÞ ¼
1

N

X
‘

X1
j¼kþ1

ðdQð‘Þ � ejÞ
2,

the average of errk over all outputs dQð‘Þ. Since the mean
of the dQ‘ is zero, n2k is the variance of the error
projected onto the directions ej with j4k.

The basis minimising the n2k for all kX1 is given by the
eigenvectors ej of the self-adjoint linear operator Y

defined by Y � e ¼ N�1
P

‘ dQð‘Þ � e
� �

e (ordered by de-
creasing size of their corresponding eigenvalue) and for
this basis the corresponding eigenvalue is n2i . A matrix
representation of this operator is given by taking the
matrix A whose columns are the vectors dQðiÞ and
forming the matrix Y ¼ N�1AAt. This is a matrix of size
ðdim dQÞ � ðdim dQÞ. Because it is self-adjoint ðYt ¼ YÞ,
its eigenvalues are always real and its eigenvectors form
an orthogonal basis. The pairs ðej ; njÞ consisting of the
vector ej and corresponding eigenvalue njX0 are called
the principal components of the ensemble fdQð‘Þg.

If we write dQð‘Þ ¼
P

ja
ð‘Þ
j ej as above then the dQð‘Þ are

mainly in the direction of the principal components ej

with the largest nj. Moreover, if nkp� then the ratio of
the variance of the lengths of the vectors dQð‘Þ �Pk

j¼1 a
ð‘Þ
j ej to the variance of the lengths of the vectors

dQð‘Þ is of order �2, Oð�2Þ.
The following theorem relates the principal compo-

nents, the SVD of M 0 and the cone C0ð�; kÞ.

Theorem 3. If the components dZð‘Þi of the vector dZð‘Þ are

independent then, in the limit N !1, the maximal

dimension d 0 of a linear subspace in the cone C0ð�; kÞ is the

number of singular values sj of M 0 with s2j 4�2X where

X ¼
P

js
2
j .

As above, M 0 ¼ UDV t is the singular value de-
composition of M 0, uj denotes the jth column of U,
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m ¼ dim dQ and D ¼ diagðs1; . . . ;smÞ is the matrix o
singular values.

Thus we see that the cones Cð�1; kÞ and C0ð�2; kÞ ar
equal if

�1 ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

X
jX2

ðsj=s1Þ
2

s
.

Since, typically the singular values decrease quickly th
square root term is no too far from one. For th
examples in Table 2 it takes the following approximat
values: 1.01, 1.2, 1.003, 1.02 and 1.38. In this sense bot
approaches give the same flexibility dimension.

3.2.2. Definition of the clock’s flexibility dimension

As defined above the flexibility dimension for a give
vector Q ¼ ðQjÞ of outputs depended upon the set o
output characteristics Qj we have chosen to focus on
However, there is a natural way to define a flexibilit
dimension of the full system which accounts for th
complete set of possible outputs in one go. This i
because all changes in the output characteristics o
importance are determined by the change in the limi
cycle g and its period t. A small change dk in th
parameters will cause a change ðdg; dpÞ to the limit cycl
g and its period t and the changes in all output variable
can be calculated from these.
Table 2

Flexibility dimension and relevant singular spectrum of various published

Model n s

Leloup et al. (1999) Neurospora 3 10

Leloup et al. (1999) Drosophila 10 38

Ueda et al. (2001) Drosophila 10 55

Leloup and Goldbeter (2003) mammal 16 53

Forger and Peskin (2003) mammal 73 36

n and s are, respectively, the number of dynamical variables and parameter

dimension d when �2 ¼ 0:05, 0.01, 0.005 and 0.001 so that the first d princi

the variance. Thus the third of these is the number of log si which are gr

model are for absolute changes, i.e., they do not take account of the size of

for M�. The lower values are for changes that are measured relative to th

values are those for M� � Dk (see text). Usually the set of lower values are t

order of magnitude and that d grows roughly linearly with the loop comple

of parameters s has been kept unusually low by assuming several differen
The limit cycle can be regarded as a function g : R!
Rn which is periodic with period t: gðtþ tÞ � gðtÞ. Since
the period t can vary with the parameters k it i
necessary to normalize g and replace it by

~gðtÞ ¼ gðtðkÞtÞ.

Then, as k varies, ~g remains periodic of period 1 an
therefore the derivative M� : dk! ðd~g; dtÞ is a ma
from variations dk into the product of the space o
functions of period 1 with R. Clearly, ð~g; tÞ determine
ðg; tÞ and vice-versa. Thus we consider M� : dk!

ðd~g; dtÞ rather than the correspondence dk! ðdg; dtÞ.

Definition 4. The flexibility dimension d (of the system) i
the largest dimension of any linear subspace that i
contained in the accessible cone Cðk; �Þ for Q ¼ ð~g; tÞ.

Note that if we are dealing with an entrained system
the period t does not change when the parameters ar
varied by a small amount. Therefore in this case we ca
ignore the variations dt.

Since we assume that the outputs are a function of th
limit cycle and its period alone, for any given vecto
Q ¼ ðQjÞ of outputs, the matrix M above is the form
Mp �M

� where M� is the above linear operator. Th
matrix Mp is the linearized relationship between th
normalised change in the limit cycle d~g plus change dt i
period and the particular output characteristics bein
models

d log10 sj=s1 with sj=s1410�2

1, 1, 2, 3 0, �1.03, �1.22, �1.30, �1.78, �1.93

1, 2, 3, 4 0, �0.97, �1.15, �1.26, �1.62, �1.75, �1.81

1, 3, 3, 3 0, �0.69, �0.94, �1.68, �1.96

2, 3, 3, 6 0, �0.19, �0.85, �1.32, �1.38, �1.43, �1.59

1, 1, 1, 2 0, �1.21, �1.86, �1.99

1, 1, 1, 2 0, �1.33, �1.52, �1.67, �1.84, �1.93

2, 3, 3, 5 0, �0.30, �0.91, �1.34, �1.46, �1.61, �1.64,

�1.75, �1.95

1, 2, 2, 5 0, �0.71, �1.24, �1.4, �1.5, �1.71, �1.74,

�1.78, �1.88

3, 4, 5, 7 0, �0.41, �0.64, �0.79, �1.14, �1.31, �1.35,

�1.57, �1.65, �1.84, �1.91

5, 7, 9,10 0, �0.14, �0.37, �0.58, �0.61, �0.67, �0.82,

�1.07, �1.1, �1.32, �1.53, �1.61, �1.7, �1.83,

�1.84, �1.99

s. The four values given for d are, respectively, the values of the flexibility

pal components capture approximately 95%, 99%, 99.5% and 99.9% of

eater than ðlog100:005Þ=2 � �1:15. The set of upper values of d for each

the parameters being perturbed so that the singular values given are those

e size of the corresponding parameter values and therefore the singular

he most relevant. We note that almost universally s is bigger than d by an

xity. The ratio s=d is lower for the last model, but in this case the number

t parameters always have the same value.
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considered and as such is well behaved and easy to
calculate. Therefore the relationship described by M� is
the crucial one and we estimate d from M�.

Important Example. If Q is the vector whose entries are
the phases of all the maxima and minima of all mRNA
and protein products and all amplitudes of the oscilla-
tions in these products, then Mp is easy to calculate.
Suppose that the time at which the ith product is
maximal (resp. minimal) is tþi (resp. t�i ). Let the limit
cycle be given by g ¼ ðxiðtÞÞ so that xiðtÞ is the time
course of the ith product. Then the ith amplitude is
given by the Ai ¼ xiðt

þ
i Þ � xiðt

�
i Þ and the phase of the

maximum (resp. minimum) of the ith product is given by
fþn =t (resp. f

�
n =t) where t is the period of the limit cycle.

Thus Q ¼ ðA1; . . . ;An;f
þ
1 ; . . .f

þ
n ;f

�
1 ; . . .f

�
n Þ and the

linear transformation Mp is given by Mp � ð~g; tÞ ¼
ðA;Fþ;F�Þ where

A ¼ ðdx1ðt
þ
1 Þ � dx1ðt

�
1 Þ; . . . ; dx1ðt

þ
n Þ � dx1ðt

�
n ÞÞ (6)

and

F� ¼
df�1
€x1ðt
�
1 Þ
; . . . ;

df�n
€x1ðt�n Þ

� �
. (7)

Thus we see that provided the curvatures €xiðt
�
i Þ are of

order 1 then the flexibility of the limit cycle and that of
the Q considered here will be very close.

In Section B.3 we explain how to approximate and
numerically calculate M�.

3.3. Inflexibility of circadian clock models

We have estimated d directly for a range of systems by
numerically calculating M� for these systems and then
carrying out the singular value decomposition of
M� � Dk. These results are shown in Table 2. The
flexibility dimension has been calculated using Theorem
2 above, i.e. by calculating the number of singular values
si of M� � Dk with si=s14�.

We find that all these systems are relatively inflexible
in the sense that for small values of �2 of the order
10�3–10�2 the flexibility dimension d is smaller than the
number s of parameters by an order of magnitude. On
the other hand, increasing the loop complexity generally
causes d to increase proportionally.

3.4. Floquet exponents and decay of the singular

spectrum

The local structure of the dynamics near to the limit
cycle are largely determined by the Floquet multipliers.
They are associated with the different rates of contrac-
tion onto the limit cycle (Guckenheimer and Holmes,
1983). For the clock systems considered here, (i) one
multiplier is 1 (corresponding to the direction along
the limit cycle), (ii) all others have modulus less than 1
(i.e. the limit cycle is attracting) and (iii) almost all of
them have a very small modulus (corresponding to
directions with very fast contraction onto the limit
cycle). The inflexibility is due to (iii) because the
flexibility dimension d is related to the number of
Floquet multipliers l for which 1=j log lj is small (of
order �).

Property (iii) is due to the loop structure of the clocks
and the nature of protein degradation and modification
because these determine the Floquet multipliers. It is
therefore expected to be a general feature of regulatory
networks. Although it is difficult to prove general results
about how rapidly the multipliers decrease, it is clear
that a large class of regulatory systems will have this
property. What is important for this are the following
characteristics: (a) one or more of the protein products
in each loop has a degradation rate whose time average
is not too small and (b) the forward and backward rates
kþi ; k

�
i : Pi Ð Piþ1 (typically corresponding to (de)pho-

sphorylation) also have a time average that is Oð1Þ on a
time scale of hours. This fact ensures that the product of
all the multipliers is of the order expð�rtÞ where t is the
period of the oscillator and r is the number of products
in the loop. This product is therefore extremely small. A
more detailed calculation is needed to show that only
very few of the multipliers are larger than Oð�Þ.

3.4.1. Sources of flexibility

Relevant singular values (i.e. those with sj=s14�) and
the corresponding Floquet multipliers are often asso-
ciated with specific structural or dynamical aspects. For
example, as we discuss in the next section, the largest
multipliers of the models considered here are usually
associated with phase changes.

For a single loop the other obvious way to generate
relevant multipliers is to have a topology and rate
constants that ensure that under reasonable starting
conditions the mean time before a protein is degraded is
large (for example because it typically has to go through
a series of modifications and their reverses before it is in
a state where it can be targeted for degradation).
Otherwise, all but one of the Floquet multipliers have
very small modulus.

A interesting consequence of this observation is that
the need for flexibility constrains the molecular struc-
ture. For example, it seems to imply an evolutionary
advantage for selective degradation. The more products
in a loop that are degraded the smaller the modulus of
the Floquet multipliers and hence the less flexible the
system. Since some degradation has to occur, this
suggests that as few as possible of the protein products
in a loop should be degraded at as low a rate as possible.

The number of these relevant multipliers is multiplied
when loops are coupled and, in addition, new ones result
from the coupling. To see the latter consider the case
when the coupling is weak. There will typically be a
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multiplier associated with the way in which perturba
tions of the relative phase of the two loops die away. A
the coupling is increased this multiplier may becom
smaller or complex but it will usually remain relevant
Thus we see that the flexibility dimension is much les
than and roughly proportional to the loop complexity

3.4.2. Principal components

We show below in Section A.2 that, in the limit o
N !1, the principal components ðej ; njÞ of a set o
output changes dQð‘Þ produced by N random paramete
changes is given by the singular value decomposition o
the matrix M 0. Applying this to the case where Q ¼ ð~g; t
we get a set of principal components ðej ; njÞ. Like ~g, the e

are given by functions ej : R! Rn which are periodi
with period 1. We discuss how to numerically calculat
these in Section B.3.

Definition 5. The ðej ; njÞ are called the principal compo

nents of limit cycle variations.

If the limit cycle is given by x ¼ gðtÞ, a phase chang
by an amount a produces x ¼ gaðtÞ ¼ gðtþ aÞ. Thus

GaðtÞ ¼
q
qa

				
a¼0

gaðtÞ ¼ g0ðtÞ

represents an infinitesimal phase change. When each o
the models in Table 1 is entrained by light, we find tha
the dominant principal component, of the limit cycl
variation ðe1; n1Þ (i.e. the one associated to the larges
singular value s1) is such an infinitesimal phase chang
(see Fig. 3).
0
0.4

0

0.4

0
0.4

0
0.5

0
0.5

0

0.4

Phase φ from 0 to 24 hrs

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. (a) The derivative with respect to time of the limit cycle for the

Drosophila model of Leloup et al. (1999). (b)–(f) the principal

components with largest singular values for the matrix M� for the

same model. Only the per mRNA, phosphorylated TIM and nuclear

PER:Tim complex levels are shown. The corresponding singular values

are 1561.7, 318.1, 178.7, 32.6, 17.2. Note the similarity of the curves in

(a) and (b) showing that the dominant principal component is an

infinitesimal phase change.
This can be understood as follows. A general insigh
from the theory of dynamical systems is that thos
directions that a limit cycle moves most in whe
parameters are varied are correlated with the direction
that are softest with respect to perturbations of th
initial conditions, i.e., those directions with the propert
that a perturbation of the dynamical variables awa
from the limit cycle is least rapidly damped. Thes
correspond to the direction associated with the Floque
multipliers (Guckenheimer and Holmes, 1983) of max
imum modulus. This is shown in Section B.4. A
perturbation of the dynamical variables causes
deviation away from the limit cycle, which is subse
quently corrected. The correction has a rapid phase i
which the shape of the limit cycle is recovered (so tha
x ¼ gðtþ aÞ) and a slow phase where the phase shift a i
corrected. The way that this latter relaxation takes plac
will typically be described by one or two multiplier
(Guckenheimer and Holmes, 1983): one when th
coupling to light is relatively weak and the phase adjust
monotonely and two (as in the Neurospora model o
Leloup et al. (1999), see Tables 1 and 2) when the phas
correction overshoots and the multipliers are comple
conjugates. Thus parameter changes easily result in
change of phase while other characteristics (such a
phase relationships) are harder to change with th
difficulty being greatest in systems with lower loo
complexity.
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3.4.3. Phase adjustments and homotopies to wea

coupling

For each of the models considered we can express th
parameters ki as functions ki ¼ kiðmÞ of another para
meter m so that when m ¼ 1 the parameter values are a
in Table 1, when m ¼ 0 the system is unforced by ligh
(and therefore autonomous) and for all 0omp1 th
system has a period t0 of 24 h and is entrained by light
This means that as m is changed from 0 to 1 the one
parameter family of systems stays inside the 1/1 Arnol
tongue (Guckenheimer and Holmes, 1983). Suppose th
differential equation describing the model is given b
_x ¼ gðt;x; kÞ, x 2 Rn. For this part of the discussion it i
useful to cast this into its equivalent form

_y ¼ gðy; y; kðmÞÞ,
_y ¼ 1, ð8

because this is an autonomous ordinary differentia
equation and therefore generates a dynamical system i
Rn � R. When m ¼ 0 the system has a invarian
torus T0 ¼ g0 � S1 where g0 is the limit cycle of th
system _y ¼ gðy; y; kð0ÞÞ (which does not depend upon
when k ¼ kð0Þ). This torus is normally hyperboli
(Guckenheimer and Holmes, 1983) since the limit cycl
is hyperbolically attracting and therefore, as m i
increased from 0, while m is small the torus persists i
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the sense that it is deformed into a nearby attracting
invariant torus Tm. Since these systems are within the
Arnold tongue, Tm contains an attracting limit cycle gm.
Let gmðsÞ denote the point gm \ fy ¼ sg. The tangent
vector vs to the intersection of Tm with fy ¼ sg is an
eigenvector of Y ðs; sþ toÞ with eigenvalue lt ¼ 1�OðmÞ
close to 1. Thus if the other eigenvalues are much closer
to zero (as is the case for the systems in Table 1) the sum
in Eq. (B.20) giving ðqgk=qkiÞðtÞ is dominated by the
term ðlm � 1Þ�1vt

R tþt0
t

ewðtþt0�sÞbi;kðsÞds where w ¼ log lm
is close to 0. It can be seen then that the dominant
principal component f1ðsÞ (see above) is very close to
being a infinitesimal phase shift of the original limit
cycle gm : y ¼ smðtÞ, i.e.

f1ðsÞ �
d

dt
smðsþ tÞ

				
t¼0

¼ s0mðsÞ.

As m is changed further towards 1, we can expect to see
bifurcations of the form shown in Fig. 21 of Ostlund et
al. (1983). As lm moves away from 1, it may collide with
another smaller eigenvalue. Until this happens we are
essentially in the case discussed in the last paragraph.
Near to where such a collision takes place we can restrict
attention to the centre manifold determined by lm and
the eigenvalue it is going to collide with (assuming the
other eigenvalues remain away from this pair). It is the
dynamics on this two-dimensional centre manifold that
should be compared with the above-mentioned bifurca-
tions. We expect that when lm collides with another
eigenvalue they will produce a pair of complex conjugate
eigenvalues lm and l̄m. When this happens the one-
dimensional eigenspace given by vs is replaced by a two-
dimensional eigenspace Vs and one can show that the
two dominant principal components f1ðsÞ and f2ðsÞ are
dominated by s0mðsÞ and s00mðsÞ.
4. Infinitesimal response curves

We now turn to consider the key question above
about evolution seeking to simultaneously tune multiple
characteristics: to what extent can the key characteristics
be tuned independently and which of them are strongly
related. In particular, we would like to describe which
combinations of parameters can be tuned in order to
produce a specific circadian characteristic. The aim is to
characterize the key evolutionary goals so that they are
given by transparent and comparable mathematical
conditions. Again we make use of the fact that the
effect of small parameter changes can be well approxi-
mated using perturbation theory. The quality of
approximation can be determined by calculation of
higher-order terms.

Our main tools are what we call infinitesimal response

curves. We consider the linear approximation to the
change dQj produced by a small change dki of the
parameter ki. An infinitesimal response curve for Qj and
ki tells us how different phases of the oscillation
contribute to dQj.

Suppose that our oscillator has a stable limit cycle
g ¼ gk of period t given by x ¼ gðfÞ with f representing
the phase, i.e. time t mod t. A key insight is that for each
parameter ki and each output Qj there is a function
f ki ;Qj
ðfÞ of the phase f such that if one changes

ðk1; . . . ; ksÞ to ðk1 þ dk1; . . . ; ks þ dksÞ only when the
phase f is between f1 and f2 (not necessarily close
together), the linear approximation to the change dQj in
a output variable Qj is of the form

dQj ¼
Xs

i¼1

dki �

Z f2

f1

f ki ;Qj
ðfÞdf

 !
þOðkdk2

kÞ. (9)

Theorem 6. For each parameter ki and each output Qj

which is a function of the limit cycle g and its period t,
there is a unique function f ki ;Qj

ðfÞ of the phase f such that

Eq. (9) holds for all choices of f1 and f2.

Definition 7. The function f ki ;Qj
ðsÞ is called the infinite-

simal response curve (IRC) of variable Qj on parameter ki.

We give formulas for these IRCs and a proof of
Theorem 6 in Appendix B. Using these the IRCs can be
numerically computed very rapidly from their analytical
expressions for all parameters and all relevant output
variables. Fig. 4 shows the largest amplitude IRCs for a
model of the Drosophila clock when Qj is period.

Recall the definition of the normalized limit cycle ~g
given in Section 3.2.2: if x ¼ gðtÞ is the limit cycle and
t ¼ tðkÞ is its period then ~gðtÞ ¼ gðtðkÞtÞ. In what follows
we are going to use the fact that any such small change
dQj is a linear function of the normalised change d~g in
the limit cycle (see Section 3.2.2) and the change dt in
the period: dQj ¼M� � ðd~g; dtÞ.

4.1. IRCs and phase response curves (PRCs)

When Qj is the period of the cycle for a free-running
clock

f ðfÞ ¼ �dki �

Z f2

f1

f ki ;Qj
ðfÞdfþOðkdkk2Þ (10)

is the phase response curve (PRC) (Winfree, 2001) of a
small perturbation dki in the parameter ki applied
between the phases f1 and f2. This follows from the
Lemma of Section B.5. We are using the fact that at the
infinitesimal level the change in period dt is minus the
change in phase ds.

If this change in ki is caused by light then Eq. (10)
gives an approximation to the usual phase response
curve for a light pulse applied between the phases f1

and f2. Thus, since for the models under considera-
tion the curves given by Eq. (10) provide excellent
approximations to the usual PRCs even when the
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Fig. 4. This shows all the large amplitude IRCs f ki ;period ðfÞ for period
for the Drosophila model of Leloup et al. (1999).

0 5 10 15 20 25

0

1

2

-1

-2

A
dv

an
ce

 o
r 

de
la

y 
in

 h
rs

Phase φ

Fig. 5. PRCs for the Drosophila model of Leloup et al. (1999) for light

pulses duration 1 (blue stars), 2 (purple triangles) and 4 h (red circles)

together with the approximation of them by integrating the

corresponding IRC (as given in Eq. (10)) from dawn to dusk

(corresponding colour solid curve). The PRCs are calculated directly

by simulating the system. In this model light acts by increasing the

degradation of TIM-p2 and thus the IRC used in the integral is

�f vdt ;period ðfÞ because the parameter vdt is changed when light is on.

The effect of the light is as in the original publication (vdT is changed

from 3 to 6nMh-1) but we very slightly changed the light profile by

smoothing out the discontinuities.
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perturbations dki are not particularly small (see Fig. 5)
the analytical expressions allow rapid computation of a
possible PRCs without having to simulate the system
and calculate PRCs in the usual way.

Using the results of an analysis such as that shown i
Fig. 4, one can estimate the effects of any hypothetica
input pathway on the phase and strength of entrainmen
(see next section). Moreover, it follows from th
linearity of Eq. (9) that one can also estimate the effec
of combinations of different pathways by simply addin
them together with the appropriate weights. We will als
show below that via Eq. (9) such an analysis gives ke
insights into stability, and temperature and pH com
pensation.
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5. Evolutionary aims and IRCs

In the discussions that follow the linear nature of th
relationship in Eq. (9) will play a crucial role because i
allows us to combine changes to multiple parameters b
simply adding them together with the appropriat
weights. Thus, for example, if light of intensity I act
by changing ki and kj by amounts dkiðIÞ and dkjðI

between f1 and f2 then the combined (infinitesimal
phase response curve is given by

f ðfÞ ¼ �
Z f2

f1

ðdkiðIÞ � f ki ;period ðfÞ

þ dkjðIÞ � f kj ;period ðfÞÞdf. ð11

5.1. Entrainment

To consider how entrainment can be discussed i
terms of IRCs we return to the earlier discussion o
Section 2.1. We consider the situation where light o
intensity I acts for a time interval of duration S from
dawn to dusk. We suppose that this light acts b
changing the parameter ki to ki þ dkiðIÞ. If the phase a
dawn of the nth day is fn then at dusk it is fn þ S þ

FðfnÞ where

FðfÞ ¼ �dkiðIÞ

Z Sþf

f
f ki ;period ðtÞdt (12

provided that the linear approximation is valid. There
fore at the end of the day the phase is given by

fnþ1 ¼ F ðfnÞ ¼ fn þ FðfnÞ þ ðL� tÞ. (13

If there are multiple input pathways then one can use th
analogue of Eq. (11) to combine them. For each
parameter ki affected by light one obtains a functio
Fi as in Eq. (12) and then just adds them to ge
F ¼

P
iFi.

As discussed in Section 2.1, entrainment correspond
to the existence of a stable fixed point f� of the map F

given by Eq. (13) because then, for almost all startin
conditions f0, the system eventually settles down to
state where fn is approximately constant at f
(fn ! f� as n!1). A fixed point f� satisfies th
equation Fðf�Þ ¼ t� L. If the graph of F is drawn (as i
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Fig. 6), the fixed points correspond to the intersections
between the graph and the diagonal given by fnþ1 ¼ fn.
The fixed point (and hence entrainment) is stable
provided �1oFðf�Þo0 because then jF 0ðf�Þjo1.

Robustness of the entrainment means that the stable
fixed point of F persists under reasonable environmen-
tal, physiological and other perturbations. Thus en-
trainment requires that the amplitude of F is greater
than the circadian correction L� t. Otherwise, there
will be no intersection between the graph of the map F

and the diagonal given by fnþ1 ¼ fn. However, it
follows that, since F is approximately given by Eq. (12),
entrainment can only occur if dkiðIÞf ki ;period has suffi-
cient amplitude to produce a phase shift of L� t
(Johnson et al., 2003). The required amplitude as a
function of L� t can be estimated from Eq. (13).
Moreover, the fixed point f� determines the phase of
entrainment and this can be determined from f ki ;phase in
the same manner as from a PRC.

Although this relationship is only approximate it is
very informative and, for example, as we see in the next
section, it allows us to study the relationship between
robust entrainment by a given environmental variable
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21 23 25 27
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Fig. 6. The phase return mapping F for the Drosophila model of

Leloup et al. (1999) when the day length is 9 h. The solid line shows the

mapping as calculated using the IRCs as in Eq. (12) and the circles

show the mapping using the numerically calculated PRC. The

embedded graph shows the phase of entrainment as a function of

the period t of the unforced system calculated using the mapping (solid

line) and directly (dots). The period t was changed using a numerical

tool that we have developed that allows one to move parameters so as

to change a particular output (here t) without changing the other key

outputs.
and robustness of the period to sustained changes in that
variable.

5.2. Temperature compensation

As noted above circadian clocks are temperature

compensated in that they maintain a roughly constant
period over a relatively wide range of temperatures
(Rensing and Ruoff, 2002). Temperature T will pre-
sumably affect a number of parameters ki which will be
functions of T : ki ¼ kiðTÞ. When temperature changes
from T to T þ dT then the change in the parameter ki

will be approximated by k0iðTÞ � dT where k0iðTÞ is the
derivative of kiðTÞ. Thus by the linearity of Eq. (9) we
can define the IRC for temperature (at T) acting on the
output variable Qj by

f T ;Qj
ðfÞ ¼

X
i

k0iðTÞf ki ;Qj
ðfÞ.

Then temperature compensation holds around T pro-
vided the integral of over a complete cycle is close to
zero (Ruoff, 2000):Z t

0

f T ;Qj
ðfÞdf � 0. (14)

By Eq. (9) the change in Qj caused by such a
temperature change is given by

dQj ¼ dT �
Xf
i¼1

k0iðTÞ �

Z t

0

f ki ;Qj
ðfÞdfþOðkdT2kÞ

� dT

Z t

0

f T ;Qj
ðfÞdf.

The chief advantages of IRCs in this context are (a) that
the effects of multiple parameter changes are very easy
to compute and (b) that using the discussion about the
relationship between entrainment and IRCs in Section
5.1 and the discussion here we can relate temperature
compensation and the entrainment properties of tem-
perature.

A commonly considered functional form for the
temperature dependence of a reaction is given by the
Arrhenius relation:

ki ¼ Ai exp �
Ei

RT

� �
, (15)

where Ai is the so-called pre-exponential factor, Ei is the
activation energy of the reaction and R is the gas
constant. In this case k0iðTÞ ¼ kiEi=RT2 and, if
I i ¼

R t
0

f ki ;Qj
ðfÞdf, then condition (14) is equivalent toX

i

kiEiI i � 0 (16)

as derived in Ruoff (2000). In Fig. 7, we show an
example of a temperature compensated system that
satisfies Eq. (16).



d
.
t
s
e
e
t
y

s

y
e
ll

r
e

r
h

Þ

e
d
,
d

x
n

ARTICLE IN PRESS

274 278 282 286 290
19

20

21

22

temperature compensated
for T = 283 degees K

temperature in degrees K

P
er

io
d

Fig. 7. In this figure we have chosen the activation energies Ei so that

the Leloup-Goldbeter model for Neurospora (Leloup et al., 1999) is

temperature compensated at T ¼ 283. The relation between ki and T is

given by Eq. (15). We see that near to T ¼ 283 the period changes

slowly with T but further away it changes more rapidly. Biological

oscillators have a more global temperature compensation where the

period is roughly constant over a more substantial temperature range.

Thus we refer to this as global temperature compensation and the sort

seen in the figure as local temperature compensation. We will discuss

how to achieve global compensation in a later paper.
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At first sight entrainment by temperature an
temperature compensation can appear at loggerheads
We can, however, see that this is not the case. Robus
entrainment requires that FðfÞ ¼

R Lþf
f f T ;period ðsÞd

does not have a small amplitude so that the stabl
solution to FðfÞ ¼ t� L is relatively robust whil
temperature compensation requires thaR t
0

f T ;period ðfÞdf � 0. Therefore these are perfectl
compatible goals.
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5.3. Robustness to parameter perturbations

If we require that the period or other output variabl
Qj is relatively stable to perturbations of the paramete
ki then by Eq. (9) we require that the integral over
complete cycle in Eq. (9) of the IRC is close to zero:Z t

0

f ki ;Qj
ðfÞdf � 0. (17

By the linearity of Eq. (9) we can apply this to stud
mixed perturbations of many parameters. Robustness t
sustained parameter perturbations requires that all IRC
must have very small integral as in Eq. (9). We ca
ignore those IRCs that have small amplitude becaus
they will therefore have small integral. However, by th
above, some IRCs must have large amplitude fo
entrainment to be possible and, as in the model
considered in Table 1, for some other parameters k

and output quantities Qj the IRCs will have larg
amplitude because of the nature of ki and Qj (e.g. for th
effect of phosphorylation and degradation rates o
period). It is widely thought that there is a stron
evolutionary advantage to robustness, so selection ma
be expected to change the system so as to balance th
large amplitude IRCs so that their integral is small. Thi
provides a significant number of evolutionary goals.
5.4. Output pathways amplitudes and phases

We consider a particular output pathway driven b
the molecular species whose level is given by xiðtÞ. Th
change in the level of xiðtÞ at t ¼ t0 produced by a sma
change in the parameters can be calculated directly from
the IRCs f ki ;Qj

where Qj ¼ xiðt0Þ via Eq. (9).
If we want to track the phase s of the minimum o

maximum of xiðtÞ we can proceed as follows. The phas
s ¼ sðkÞ satisfies _xiðsÞ ¼ 0 or equivalently giðs; xðsÞ; k0Þ ¼

0 where _x‘ ¼ g‘ðt;x; kÞ, ‘ ¼ 1; . . . ; n is the system unde
consideration. Differentiating this relationship wit
respect to kj and solving for qs=qkj gives

qs

qkj

¼
X
‘

qgi

qx‘
� g‘

 !�1
qgi

qt
þ
X
‘

qgi

qx‘

 

�
qx‘

qx0
‘

qx0
‘

qkj

þ
qx‘

qkj


 �
þ

qgi

qkj

!
, ð18

where x0 is the initial point on the limit cycle that is th
initial condition. In this expression derivatives of gi an
g‘ are evaluated at x ¼ xðs0; k0Þ, s ¼ s0 and k ¼ k0

derivatives of x‘ are evaluated at x ¼ x0, s ¼ s0 an
k ¼ k0, and the derivatives of x0

‘ at k ¼ k0.
The derivatives qx‘=qx0

‘ are given by the matri
solution Y ðtÞ of either Eq. (B.3) or Eq. (B.14) i
Appendix B and those of qx0

‘=qkj are given b
integrating the IRC f k‘ ;x0

where x0 is the point on th
limit cycle at the starting phase.
5.5. Robustness to stochastic perturbations

It is worthwhile considering this in the context of th
large O limit where O is the number of molecule
involved in the clock (Gonze et al., 2002). In this limi
the fluctuations about the limit cycle are normall
distributed with zero mean. After N cycles of the perio
T the projections of these fluctuations onto the directio
of the limit cycle (i.e. the fluctuations in the time t
complete N oscillations) have a variance that is s2 ¼
N=aO where a is calculated according to the prescriptio
in Gonze et al. (2002).

The projections onto the eigendirection that ar
transverse to the limit cycle (the directions zjðtÞ o
Section B.4) have a variance that is Oðjrjj

2Þ where rj i
the corresponding eigenvalue. It follows from this tha
one can often reduce the effect of stochastic perturba
tions by reducing the eigenvalues. However, this als
reduces the flexibility of the system. Therefore, evolutio
must trade off these two effects or come up wit
different ways of counteracting this stochasticity.
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6. Discussion and future prospects

We have presented an analysis of key evolutionary
aims of circadian clocks such as robustness to perturba-
tions, temperature and pH compensation, appropriate
period, robust entrainment by environmental signals,
and correct phase relationships for output pathways. It
is widely believed that there is selective pressure for each
of these targets. We have discussed the characterization
of each of these targets in terms of IRCs (see Table 3).
These IRCs are relatively easy to calculate and we have
provided software to do this on our website. We have
discussed in detail the mathematical theory behind IRCs
and described in detail how they can be computed
numerically. The underlying perturbation theory for
periodic orbits is classical but we give a new way of
looking at this which is particularly useful in the context
of circadian rhythms. Our analysis of the mathematical
characterization of these aims in terms of the tuning of
output quantities expressed in terms of IRCs is
summarized in Table 3.

The IRCs for period give accurate approximations of
PRCs for environmental pulses with a broad range of
durations and intensities via Eq. (9). We have explained
the mathematical theory underlying this results in
Appendix B (e.g. in Section B.5). This can be used to
study entrainment by environmental signals such as light
or temperature.

We find that robust entrainment requires that the
appropriate combination of IRCs for the pathways
involved in the environmental input has large amplitude
and that the circadian correction L� t is appropriate to
ensure a robust stable fixed point of the mapping F given
by Eq. (13). On the other hand properties like
temperature compensation require that the IRC for
temperature, which is a linear combination of basic
IRCs f ki ;period is balanced in the sense of Eq. (14). A
similar argument applies to compensation for sustained
Table 3

Summary of how different properties are characterized by IRCs

Evolutionary aim

Setting period

Entrainment

PRCs for short disturbances of duration df

PRCs for disturbances lasting for an interval S and starting at phase c

Temperature compensation

pH compensation

Parameter stability for ki

Phase relationships for xiðtÞ

Each evolutionary aim can be described as tuning one or more particular out

actually a function rather than just a number.
variations of other environmental components such as
pH. Thus we see that the conditions for robust
entrainment by an environmental variable such as
temperature and compensation for that variable are
independent and perfectly compatible. Stability of key
output variables with respect to parameter changes is
also characterized by Eq. (17). This suggests that for key
outputs Qj it will be necessary for evolution to roughly
balance (in the sense of Eq. (17)) those IRCs which have
large amplitude because otherwise these outputs will be
unstable to variations in the parameters. For example, if
Qj is period and f ki ;Qj

has large amplitude and is far
from balanced then sustained variations in ki are likely
to change the circadian correction sufficiently to destroy
entrainment (see Fig. 6 and Eq. (13)). The conditions for
correctly tuned output pathways and the robustness of
this correct tuning also involve combinations of the
IRCs.

Since we can express the various evolutionary aims in
terms of IRCs we can determine to what extent they are
independent of each other. This requires an analysis of
which IRCs are involved, the nature of the condition on
the IRC and the extent to which the IRCs are linearly
independent of each other. However, it is not difficult to
see that in general a large number of the most important
evolutionary goals discussed here are independent. It
therefore emerges that there are multiple independent
characteristics that we can expect will confer a selective
advantage and moreover that should be accessible to a
process of small random perturbations and selection
provided the flexibility of the clock is large enough. It
seems reasonable that, there will be more than 5 or 6
such characteristics that are of key importance and
therefore that the flexibility needed to achieve this will at
least require a loop complexity equivalent to the most
loop complex models in Table 1.

In order to simultaneously tune q of the character-
istics that are of key importance it is necessary to be able
Mathematical characterization in terms of IRCs

change in period Qj ¼ t due to change dki is dki

R t
0 f ki ;period ðfÞdf

stability and phase determined by V ðcÞ ¼ �dkiðIÞ
R Lþc
c f ki ;period ðfÞdf

when input pathway modulates ki

PRC Qj approximated by �dki � f ki ;period ðfÞdf when input pathway

modulates ki

PRC Qj approximated by �dkiðIÞ
R Sþc
c f ki ;period ðfÞdf

Qj ¼
R t
0 f T ;Qj

ðfÞdf � 0

Qj ¼
R t
0 f pH;Qj

ðfÞdf � 0

Qj ¼
R t
0 f ki ;Qj

ðfÞdf � 0

uses f mi ;g;tðsÞ

put variables Qj . Note that in the case of entrainment and PRCs, Qj is
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to move the appropriate output vector Q independentl
in q dimensions by using small changes in th
parameters. However, even if one can freely move lot
of parameters it does not follow that by doing this on
can freely move the output Q with the same dimension
ality. Movement of Q in certain directions is highl
resisted for the clock systems studied. Seen another way
if the parameter changes are random and uncorrelate
then the movement produced in Q will tend to be highl
correlated with the changes strongly concentrated in jus
a few dimensions. The number d of these dimensions i
given by the flexibility dimension that we have defined
We have shown that this flexibility dimension is given b
the singular values of the matrix M� and have rigorousl
related the two approaches to flexibility.

We have provided strong evidence that the flexibilit
dimension d is smaller than the number of parameter
by an order of magnitude and roughly proportional t
the loop complexity of the system. Thus evolution wi
only be effective in reaching multiple independen
targets if the flexibility dimension d of the system is a
large as the number of targets. If the system i
constrained so that it can only reasonably move in
small number of dimensions then it will only be able t
tune a small number of targets.

It follows that there is likely to be a strong selectiv
advantage in increasing loop complexity and stron
selection for mechanisms that enable this such as gen
duplication and protein variation. Mechanisms an
divergence that may increase complexity are found i
the circadian clocks of Neurospora (Garceau et al
1997), Drosophila, Arabidopsis (Eriksson et al., 2003
and the mouse (Daan et al., 2001; Zheng et al., 2001
Oster et al., 2002). In addition, we have argued that th
selective degradation of protein products also aid
flexibility and therefore that we would expect to fin
that not all protein products are degraded at the sam
rate but that degradation is concentrated on selecte
products in certain modified states.

Since one can understand the lack of flexibility i
terms of properties of dynamical systems one can mak
some estimate of the range of applicability of thes
ideas. It therefore seems rather clear that the idea
discussed will apply to a broad range of dynamica
processes of such regulatory networks and not just t
oscillating systems. For example, similar ideas shoul
apply to the propagation of perturbations along path
ways, multistable networks that act, for example, a
switches and networks of transcription factors tha
determine spatial patterning.
,
l

-
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Appendix A. Proofs of results relating flexibility and

singular values

A.1. Proof of Theorem 2

Let M 0 ¼ UDVt be the singular value decompositio
of M 0 where D ¼ diagðs1; . . . ; ssÞ and we order the sj4
so that s1Xs2X � � �Xss. Let uj and vj denote, respec
tively, the columns of U and V corresponding to s
Then M 0 � vj ¼ sjuj and therefore, if v ¼

P
jajv

u ¼M 0 � v ¼
P

jajsjuj. Moreover, since the vj (resp. uj

are orthonormal, kvk2 ¼
P

ja
2
j and kuk2 ¼

P
jajs2j . I

follows immediately from this that R� ¼ s1.
Every dQ in the image of M 0 can be written as

P
jaju

where the sum is over those j where sja0. Then kdQk2 ¼P
ja

2
j . Moreover, if dZ ¼

P
js
�1
j ajvj , M 0 � dZ ¼ dQ. I

this sum is only over those j with sj=s14� then if follow

that s21kdZk
2 ¼

P
jðajs1=sjÞ

2p��2
P

ja
2
j ¼ �

�2kdQk2 an

therefore dQ is in the cone Cð�;kÞ. Therefore, since
R� ¼ s1, Cð�;kÞ contains the vector space W spanned b
the uj with sj=s14�.

Now suppose that W 1 is a linear subspace containe
in the cone and of maximal dimension. Let p : W 1!W

be the projection

p
X

j

ajuj

 !
¼

X
j:sj=s14�

ajuj.

The kernel of p consists of vectors of the form dQ ¼P
jajuj where the sum is only over those j such tha

0osj=s1p�. Let dZ ¼
P

jðaj=sjÞuj so that M 0 � dZ ¼ dQ

Then, since s21kdZk
2
X��2kdQk2 the vector dQ is not i

the cone. Since W 1 is in the cone it follows that ker p ¼
0 and therefore that the dimensions of W 1 and W ar
the same. Thus the dimension of W 1 is equal to th
number of singular values with sj=s14�.
A.2. Proof of Theorem 3 relating the principal

components, the SVD of M 0 and the cone C0ð�; kÞ

As above M 0 ¼ UDVt is the singular value decom
position of M 0, uj denotes the j’th column of U, m ¼

dim dQ and D ¼ diagðs1; . . . ;smÞ is the matrix o
singular values (see Section 3.2.1).
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Lemma A.1. If the components dZð‘Þi of the vector dZð‘Þ

are independent with variance S2 then in the limit

N !1, ni ! Ssi and ej ! uj .

Proof. Firstly we note that the principal components
ðej ; njÞ associated with Y are given by the singular value
decomposition A ¼ UADAV t

A of A. In fact, the ej are the
columns of UA and n2j ¼ k2j =N where the kj are the
diagonal elements of DA. This follows because
Y ¼ N�1AAt ¼ UAðN

�1D2
AÞU

t
A.

Now we show that as N !1, ni ! Ssi and ej ! uj.
Let us write the vectors dZð‘Þ in the basis given by the
vectors vj which are the column of V above so that
dZð‘Þ ¼

P
ja
ð‘Þ
j vj. Then M 0 � dZð‘Þ ¼M 0Vað‘Þ ¼ UDað‘Þ

where að‘Þ is the (column) vector ða
ð‘Þ
1 ; . . . ; a

ð‘Þ
m Þ

t,
m ¼ dim dQ.

Let a be the matrix whose ‘th column is að‘Þ. Then the
matrix A above is given by UDa so that Y ¼ UDCDUt

where C ¼ N�1aat. The entries of this latter matrix are
the correlations Cij ¼ N�1

PN
‘¼1a

ð‘Þ
i a
ð‘Þ
j . Therefore, if we

assume that the components dZð‘Þi of the vector dZð‘Þ are
independent with variance S2 we have that in the limit
N !1, C ¼ S2I where I is the identity matrix. This
follows because if a ¼ X � dZ with X an orthonormal
matrix (as is the case here), then N�1

PN
‘¼1a

ð‘Þ
i a
ð‘Þ
j ! dijS

as N !1. Thus, as N !1, Y! US2D2Ut so that
ej ! uj and ni ! Ssi. &

Now we relate all this to the cone C0ð�; kÞ defined in
Eq. (5).

Lemma A.2. If v ¼
P

jbjuj is any vector in the image of

M 0 and the dZð‘Þ and dQð‘Þ are as in Lemma A.1, then

lim
N!1

N�1
X
‘

ðdQð‘Þ � vÞ2 ¼ S2
X

j

s2j b2
j

and

lim
N!1

N�1
X
‘

ðdQð‘Þ � dQð‘ÞÞ ¼ S2
X

j

s2j .

Proof. As in the previous proof let dZð‘Þ ¼
P

ja
ð‘Þ
j vj so

that dQð‘Þ ¼M 0 � dZð‘Þ ¼
P

jsja
ð‘Þ
j uj. Then

N�1
X
‘

ðdQð‘Þ � vÞ2 ¼
X

j

s2j b2
j Cjj þ

X
jak

sjskbjbkCjk,

where Cjk ¼ N�1
P

‘a
ð‘Þ
j a
ð‘Þ
k is the correlation discussed in

the proof of Lemma A.1.
The first part of the lemma then follows from the fact

that Cjk ! djkS as N !1. The second part follows
immediately from this fact and the expression for dQð‘Þ

in terms of the a
ð‘Þ
j . &

Corollary A.3. A vector v ¼
P

jbjuj lies in the cone

C0ð�; kÞ if and only if ð
P

js
2
j b2

j Þ=ð
P

jb
2
j Þð
P

js
2
j Þ4�2.

The proof of Theorem 3 follows from this.

Proof of Theorem 3. The proof is along the same lines as
that of Theorem 2. One firstly uses Corollary A.3 to
show that the vectors uj with s2j 4�2X are contained in
the cone. Then one considers a linear subspace W 1 in
the cone of maximal dimension and the projection p as
in the proof of Theorem 2. Then the kernel of p consists
of vectors of the form dQ ¼

P
jajuj where the sum is

only over those j such that s2j p�2X. For such a vector

R2
dQ ¼ lim

N!1

P
‘hdQð‘Þ; dQi2

kdQk2
P

‘kdQð‘Þk2

¼ lim
N!1

X�2kdQk�2N�1
X
‘

X
j

a2
j hdQð‘Þ; uji

2

¼ X�2
X

j

a2
j s

2
j

 !, X
j

a2
j

 !
p�2.

Thus the vector dQ is not in the cone. Since W 1 is in the
cone it follows that ker p ¼ 0 and therefore that the
dimensions of W 1 and W are the same. &
Appendix B. Perturbations of the limit cycle and proofs

about IRCs

The first step in this analysis is to calculate the linear
part of the perturbation dg of the periodic orbit when a
parameter is changed. This is a result of standard theory
(see Hartman, 1964) and related formulas are discussed
in Hwang et al. (1978).

B.1. Perturbations and IRCs: Unforced (free-running)

case

We consider the differential equation

_y ¼ gðy; kÞ, (B.1)

where y ¼ ðy1; . . . ; ynÞ 2 Rn and k is a parameter. We are
assuming that the equation is autonomous and hence
unforced, or forced with a forcing that is constant in
time. For clocks this corresponds to the case where the
environmental forcing by light or temperature is un-
changing in time.

We assume that Eq. (B.1) has a attracting periodic
solution y ¼ g0ðtÞ with period t ¼ t0 when k ¼ k0. We
consider how this solution changes as k is varied. To do
this we follow the treatment in Hartman (1964).

B.1.1. Setting up an appropriate coordinate system

We fix a point y0 ¼ g0ð0Þ on the periodic solution and
consider a small ðn� 1Þ-dimensional hyperplane S
which meets the periodic solution at the point y0 and
is transversal to the solution. For example, one could
take S to be the plane normal to the tangent vector
to the periodic solution at y0. Near to y0 there
is a coordinate system x ¼ ðx1; . . . ;xnÞ such that (a)
x 2 S if and only if x1 ¼ 0, (b) in this coordinate system,
y0 ¼ 0 ¼ ð0; . . . ; 0Þ and gðy0; k0Þ ¼ ð1; 0; . . . ; 0Þ. Let the
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differential equation (B.1) in the new coordinate system
be given by

_x ¼ f ðx; kÞ (B.2

and the periodic orbit be given by x ¼ g0ðtÞ. We conside
solutions Y ðtÞ ¼ Y ðt;x0; kÞ of the matrix variationa
equation

_x ¼ f ðx; kÞ; _Y ¼ AðtÞ � Y ; xð0Þ ¼ x0; Y ð0Þ ¼ I .

(B.3

Here xðtÞ ¼ xðt; x0; kÞ is the solution of _x ¼ f ðx; k
with initial condition x0, Y ðtÞ ¼ Y ðt;x0; kÞ is a n�

matrix and AðtÞ ¼ Aðt;x; kÞ is the Jacobian matri
of partial derivatives ðqf i=qxjÞ evaluated at x ¼ xðt

and k and the initial condition for this solution i
that Y ð0Þ is the identity matrix I . If for the matrix Y ðt0
the eigenvalue 1 is simple then, for k near k0, system
(B.3) has a unique periodic orbit x ¼ gkðtÞ nea
x ¼ g0ðtÞ. This limit cycle varies smoothly with k. Le
tðkÞ be the period of gk and let x0ðkÞ be the point wher
gk intersects S.

Firstly we ask how the period and the point x0 chang
as a function of ki. It is not too difficult to find their firs
derivatives which are given by the following equation:

qt=qki

qx0=qki

" #
k¼k0

¼ � ðY ðt0Þ � diag½0; In�1	Þ
�1

ðB:4

�Y ðt0Þ
Z t0

0

Y ðfÞ�1biðfÞdf, ðB:5

where Y ðtÞ stands for Y ðt;x0ðk0Þ; k0Þ and biðfÞ is qf =qk

evaluated at x ¼ g0ðfÞ and k ¼ k0.
Let xðt; x; kÞ denote the solution of the differentia

equation with initial condition x0 ¼ x0ðkÞ. To obtai
this equation we note that the point x0ðkÞ satisfie
xðt; x0ðkÞ; kÞ ¼ x0ðkÞ, differentiate this equation with
respect to k and solve for the left-hand side of Eq
(B.5). Then we use the results of Hartman (1964
expressing the derivatives qx=qx0 and qx=qki in term
of Y ðtÞ.

The limit cycle is given by gkðtÞ ¼ xðt; x0; kÞ. Thus

q
qk

gkðtÞ ¼
qx
qx0
ðt;x0; kÞ �

qx0

qk
þ

qx
qk
ðt; x0; kÞ.

The term qxðt;x0; kÞ=qx0 is given by Y ðtÞ because i
satisfies _Y ¼ AðtÞY ; qx0=qk is given by Eq. (B.5); an
the last term is given by

Y ðt0Þ �
Z t

0

Y ðfÞ�1 � biðfÞdf ¼
qx
qk
ðt;x0; kÞ

because it satisfies the equation _Y ¼ AðtÞY þ biðtÞ.
From this one can show that, if the change in g

arising from a change dk in k is qkg � dk ¼
P

iðqkgÞi � dk
then

ðqkgÞi ¼ � Y ðtÞp2ðY ðt0Þ � diag½0; In�1	Þ
�1

�Y ðt0Þ
Z t0

0

Y ðfÞ�1biðfÞdf ðB:6

þ Y ðtÞ

Z t

0

Y ðfÞ�1biðfÞdf, ðB:7

where p2ðx1; . . . ;xnÞ ¼ ð0;x2; . . . ; xnÞ.
Thus if we only change the parameter value betwee

f1 and f2 then the change in the limit cycle and it
period is given by

dgðtÞ ¼
X

i

dki �

Z f2

f1

f ki ;g;tðfÞdfþOðkdkk2Þ (B.8

and

dt ¼
X

i

dki �

Z f2

f1

f ki ;period ðfÞdfþOðkdkk2Þ, (B.9

where

f ki ;g;tðfÞ ¼ � Y ðtÞ � p2ðY ðt0Þ � diag½0; In�1	Þ
�1

�Y ðt0ÞY ðfÞ
�1biðfÞdf

þ t�10 Y ðtÞ �

Z t

0

Y ðsÞ�1biðsÞds

and

f ki ;period ðfÞ ¼ p1ðY ðt0Þ � diag½0; In�1	Þ
�1

�Y ðt0ÞY ðfÞ
�1biðfÞdf. ðB:10

Definition B.1. f ki ;g;tðfÞ and f ki ;period ðfÞ are called th

universal IRCs for unforced systems because all the othe
IRCs can be calculated from them.

We are now in a position to prove Theorem 6 fo
unforced systems but firstly recall the definition of th
normalized limit cycle ~g given in Section 3.2.2. Sinc
gkðtÞ ¼ xðt;x0ðkÞ; kÞ, ~gkðtÞ ¼ xðttðkÞ;x0ðkÞ; kÞ and there
fore

yiðtÞ ¼
q
qki

				
k¼k0

~gkðtÞ ¼ t
qt
qki

				
k¼k0

qx
qt
þ

q
qk

gkðtt0Þ

¼ t
qt
qki

				
k¼k0

f ðg0ðt0tÞ; k0Þ þ
q
qk

gkðtt0Þ. ðB:11

The last term is given by Eq. (B.7) above. Thus we se
that

d~gðtÞ ¼
X

i

dki �

Z f2

f1

~f ki ;g;tðfÞdfþOðkdkk2Þ, (B.12

where ~f ki ;g;tðfÞ ¼ f ki ;g;tðfÞ þ tf ðg0ðt0tÞ; k0Þf ki ;period ðfÞ.

Proof of Theorem 6 (for unforced systems). The change
dQj caused to the output variable Qj by variations dki i
the parameter ki are linear functions of the change dt i
the period and the change d~gðtÞ of the limit cycle. Let u
write this relationship dQj ¼ Lj � ðd~g; dpÞ. It follow
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immediately from Eqs. (B.8), (B.9) and (B.12) that there
is a function f ki ;Qj

satisfying Eq. (9). The fact that it is
unique follows because it satisfies Eq. (9) for all
appropriate f1 and f2. &

B.2. Entrained forced case

The case where the system is entrained to the periodic
forcing is more straightforward. Firstly, we do not have
to worry about changing the coordinate system as
above. Secondly, we can ignore changes in the period so
long as the system stays entrained.

We consider the system

_y ¼ gðt; y; kÞ, (B.13)

where y ¼ ðy1; . . . ; ynÞ 2 Rn, k ¼ ðk1; . . . ; ksÞ is the vector
of parameters and gðtþ t; y; kÞ � gðt; y; kÞ. We assume
that Eq. (B.13) has a attracting periodic solution y ¼

g0ðtÞ with period t ¼ t0 when k ¼ k0. As above we
consider solutions Y ðtÞ ¼ Y ðt;x0; kÞ of the matrix
variational equation

_y ¼ gðt; y; kÞ; _Y ¼ AðtÞ � Y ; yð0Þ ¼ x0; Y ð0Þ ¼ I .

(B.14)

Here Y ðtÞ ¼ Y ðt;x0; k0Þ is a n� n matrix and AðtÞ ¼

Aðt;x; kÞ is the Jacobian matrix of partial derivatives
ðqf i=qxjÞ evaluated at t;x ¼ xðtÞ and k ¼ k0. The initial
condition for this solution is that Y ð0Þ is the identity
matrix I . If the matrix Y ðt0Þ does not have 1 as an
eigenvalue then, for k near k0, the system (B.14) has a
unique periodic orbit y ¼ gkðtÞ near y ¼ g0ðtÞ. Moreover,
these periodic orbits satisfy

q
qki

gkðtÞ

				
k¼k0

¼ � ðY ðt0Þ � IÞ�1 � Y ðt0Þ

�

Z p

0

Y ðsÞ�1 � biðsÞds. ðB:15Þ

Here the vector biðsÞ is qf =qki evaluated at y ¼ g0ðtÞ and
k ¼ k0. This is proved in a similar fashion to the proof
for Eq. (B.7) above.

For the universal IRC in this case we only have to
consider f ki ;g;tðfÞ since period variations are not
relevant. In this case, if the change in the parameters
is only applied between f1 and f2, the change in the
limit cycle (as in Eq. (B.8)) is given by

dgðtÞ ¼
X

i

dki �

Z f2

f1

f ki ;g;tðfÞdfþOðkdkk2Þ, (B.16)

where

f ki ;g;tðfÞ ¼ � Y ðtÞ p2ðY ðt0Þ � IÞ�1Y ðt0ÞY ðfÞ
�1biðfÞ

�

þt�10

Z t

0

Y ðsÞ�1biðsÞds
�
. ðB:17Þ
Proof of Theorem 6 (for forced systems). The proof
proceeds in a similar fashion to the unforced case. &

B.3. Calculation of the circle perturbations

We now consider the normalised limit cycle ~gk. The
partial derivatives of this are given by Eq. (B.11) where,
for the forced and entrained case, the first term is zero.

To approximate the linear operator M� : dk!

ðd~g; dtÞ one can proceed as follows. In terms of the
quantities yiðtÞ ¼ q~gkðtÞ=qkijk¼k0

which are calculated
above in Eq. (B.11), the operator M� is given by

M� � dk ¼
X

i

dki � yi.

Thus if ȳi is the vector given by ðȳiÞj ¼ yiðj=NÞ, (where N

is a large integer), an approximation M ðNÞ of M� is
given by

M ðNÞ � dk ¼
X

i

dki � ȳi.

This gives a matrix representation for M ðNÞ in terms of
the basis vectors ȳi. This approach corresponds to
approximating d~g ¼ d~gðtÞ by the vector dg whose jth
entry is d~gðj=NÞ.

We have developed a software tool that rapidly
calculates the quantities yiðtÞ. Using the above results
this enables us to compute M� and its singular value
decomposition to arbitrary accuracy. An example of
such a calculation is given in Fig. 3.

B.4. Perturbations and Floquet multipliers

Let r1; . . . ;rk be the eigenvalues of Y ðt0Þ and suppose
that r‘ has multiplicity n‘ so that n1 þ n2 þ � � � þ nk ¼ n.
For each ‘ there are vectors
z
ð‘Þ
1 ¼ z

ð‘Þ
1 ðtÞ; . . . ; z

ð‘Þ
n‘
¼ zð‘Þn‘

ðtÞ, which are periodic in t

with period t0, such that each of the following are
independent solutions of

_Y ¼ AðtÞ � Y (B.18)

in Eq. (B.3) or (B.14)

z
ð‘Þ
1

tm

m!
þ z
ð‘Þ
2

tm�1

ðm� 1Þ!
þ � � � þ zð‘Þm tþ z

ð‘Þ
mþ1

� �
r�t=t0
‘ ,

ðm ¼ 0; 1; . . . ; n‘ � 1Þ.

Every solution of Eq. (B.18) is a linear combination of
these. For clarity consider the generic case where the
eigenvalues are all simple (i.e. n‘ � 1). Suppose that
r1; . . . ;rr are real and rrþ1; . . . ;rn are complex and
rj ¼ et0wj . Then there are vectors zjðtÞ, j ¼ 1; . . . ; r and
pairs of vectors zjðtÞ ¼ ðz

ðaÞ
j ðtÞ; z

ðbÞ
j ðtÞÞ, j ¼ rþ 1; . . . ; n;

each periodic in t with period t0 such that every solution
of Eq. (B.18) is a linear combination of the functions
zjðtÞe

twj (j ¼ 1; . . . ; r where wj is real) and z
ðaÞ
j ðtÞe

aj t cos yj t

and z
ðbÞ
j ðtÞe

aj t sin yj t (j ¼ rþ 1; . . . ; n where wj ¼ aj þ iyj
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is complex). This means that the matrices Y ðtÞ map th
vectors zjð0Þ to zjðtÞ for j ¼ 1; . . . ; r and, if VjðtÞ is th
two-dimensional space spanned by z

ðaÞ
j ðtÞ and z

ðbÞ
j ðtÞ fo

j ¼ rþ 1; . . . ; n, then Y ðtÞ maps V jð0Þ onto V jðtÞ an
acts as a rotation through yj t with respect to the give
basis. It follows from this that

q
qki

gkðtÞ

				
k¼k0

¼
X

m

ðrm � 1Þ�1zmðtÞ

�

Z tþt0

t

ewmðtþt0�fÞbi;mðfÞdf, ðB:19

where biðtÞ ¼
P

mbi;mðtÞzmðtÞ and if rm is real th
summand has the obvious meaning while if it is comple
then the summand should be interpreted appropriately
zmðtÞ is the complex vector z

ðaÞ
j ðtÞ þ iz

ðbÞ
j ðtÞ; bi;mðtÞ ¼

b
ðaÞ
i;mðtÞ þ ib

ðbÞ
i;mðtÞ where bi;mðtÞ is the projection of biðt

into VmðtÞ and the summand is the usual vector in V mðt

obtained by taking real and imaginary parts. Each wm i
negative and if it is not too close to zero then we ca
approximate the integral in Eq. (B.19) by w�1m bi;mðtÞ. Th
error terms are Oðw�2m Þ or Oðe�t0wmÞ. Thus we can writ

q
qki

gkðtÞ

				
k¼k0

�
X

m:wm
0

ðrm � 1Þ�1zmðtÞ

�

Z tþt0

t

ewkðtþt0�fÞbi;mðfÞdf

þ
X

k:wmf0

bi;kðtÞ

ðrm � 1Þwm

zmðtÞ. ðB:20

From this we see that in the direction of the eigenspac
corresponding to wm, the magnitude of the perturbatio
is Oð1=jwmjÞ.

B.5. Proof that IRC for period gives a PRC

In this we use the notation of Section B.1.1. Thus w
consider system (B.2) given by _x ¼ f ðx; kÞ. The point y0

the cross section S and the coordinate system x ¼

ðx1; . . . ;xnÞ are as in Section B.1.1. We let p1 denote th
projection p1ðxÞ ¼ x1. Since the vector field at y0 i
ð1; 0; . . . ; 0Þ, it follows that if xðtÞ ¼ g0ðtÞ is the periodi
orbit ðxð0Þ ¼ y0Þ then p1ðxðtÞÞ ¼ tþOðt2Þ.

Lemma B.2. Suppose that xðt; x; kÞ is the flow of th

dynamical system (B.2) so that xðt; y0; k0Þ is the periodi

orbit. Then the phase of xðt0; y0ðkÞ; kÞ equals s ¼
p1ðxðtðkÞ; y0ðkÞ; kÞÞ up to an error which is Oðs2Þ and

qs
qki

¼ �
qt
qki

.

Proof. Since xðtðkÞ; y0ðkÞ; kÞ ¼ y0ðkÞ we have

qx
qy0

�
qy0

qki

þ
qx
qki

¼
qy0

qki

�
qx
qt
�
qt
qki

,

where the partial derivatives of x are calculated a
ðt; y; kÞ ¼ ðt0; y0ðk0Þ; k0Þ and the other partial derivative
are calculated at k ¼ k0. Thus

qs
qki

¼
q
qki

p1ðxðt0; y0ðkÞ; kÞÞ ¼ p1
qx
qy0

�
qy0

qki

þ
qx
qki

� �

¼ p1
qy0

qki

�
qx
qt
�
qt
qki

� �
¼ �

qt
qki

since p1ðqy0=qkiÞ ¼ 0 and qx=qt ¼ ð1; 0; . . . ; 0Þ so tha
p1ðqx=qtÞ ¼ 1 an
p1ððqx=qtÞ � ðqt=qkiÞÞ ¼ ðqt=qkiÞ � p1ðqx=qtÞ. &
Appendix C. Numerical calculation of IRCs and

intelligent orienteering in parameter space

The calculation of the IRCs was performed in Matla
and we will make available via our website www.math
s.ac.uk/ipcr/ a Matlab software tool that we hav
written that allows one to analyse clock models give
by differential equations. In particular this tool ca
calculate the IRCs f ki ;Qj

, the operator M� and th
principal components of Sections 3.4.2 and B.3. It ca
also be used to make user-specified changes to th
outputs by varying parameters, and to integrate th
equations and compare the forced and unforce
behaviours.

The calculation of IRCs is straightforward using Eq
(B.8) or Eqs. (B.17) and (B.10) except for one issue. I
order to obtain IRCs given by Eq. (B.8) or Eqs. (B.17
and (B.10) we need to calculate the matrix Y ðtÞ�1 an
unfortunately, since kY ðtÞ�1k
 expAt, where A i
typically quite large, the computation blows up rathe
quickly as t is increased towards t0. This issue i
addressed in Hwang et al. (1978) and we used simila
ideas to overcome the blowup.

The results of this paper can also be used to perform
intelligent orienteering or tuning in parameter space t
achieve certain user-required changes in the phenotyp
of the clock model and we have incorporated such a
approach into the software tool mentioned above.
References

Albrecht, U., Zheng, B., Larkin, D., Sun, Z.S., Lee, C.C., 2001. Mper

and mper2 are essential for normal resetting of the circadian clock

J. Biol. Rhythms 16 (2), 100–104.

Cheng, P., Yang, Y.H., Liu, Y., 2001. Interlocked feedback loop

contribute to the robustness of the neurospora circadian clock

Proc. Natl Acad. Sci. USA 98 (13), 7408–7413.

Cyran, S.A., Buchsbaum, A.M., Reddy, K.L., Lin, M.C., Glossop

N.R., Hardin, P.E., Young, M.W., Storti, R.V., Blau, J., 2003

vrille, pdp1, and dclock form a second feedback loop in th

drosophila circadian clock. Cell 112 (3), 329–341.

Daan, S., Albrecht, U., van der Horst, G.T.J., Illnerova, H

Roenneberg, T., Wehr, T.A., Schwartz, W.J., 2001. Assembling

clock for all seasons: are there m and e oscillators in the genes

J. Biol. Rhythms 16 (2), 105–116.

http://www.maths.ac.uk/ipcr/
http://www.maths.ac.uk/ipcr/


ARTICLE IN PRESS
D.A. Rand et al. / Journal of Theoretical Biology 238 (2006) 616–635 635
Eriksson, M.E., Hanano, S., Southern, M.M., Hall, A., Millar, A.J.,

2003. Response regulator homologues have complementary, light-

dependent functions in the arabidopsis circadian clock. Planta 218

(1), 159–162.

Forger, D.B., Peskin, C.S., 2003. A detailed predictive model of the

mammalian circadian clock. Proc. Natl Acad. Sci. USA 100 (25),

14806–14811.

Garceau, N.Y., Liu, Y., Loros, J.J., Dunlap, J.C., 1997. Alternative

initiation of translation and time-specific phosphorylation yield

multiple forms of the essential clock protein frequency. Cell 89 (3),

469–476.

Glossop, N.R.J., Lyons, L.C., Hardin, P.E., 1999. Interlocked

feedback loops within the drosophila circadian oscillator. Science

286 (5440), 766–768.

Goldbeter, A., 2002a. Computational approaches to cellular rhythms.

Nature 420 (6912), 238–245.

Goldbeter, A., 2002b. Computational biology of circadian rhythms.

Mol. Biol. Cell 13, 57.

Gonze, D., Roussel, M.R., Goldbeter, A., 2002. A model for the

enhancement of fitness in cyanobacteria based on resonance of a

circadian oscillator with the external light- dark cycle. J. Theor.

Biol. 214 (4), 577–597.

Guckenheimer, J., Holmes, P., 1983. Nonlinear oscillations, dynamical

systems and bifurcations of vector fields. Applied Mathematical

Sciences. Springer, New York.

Harmer, S.L., Hogenesch, L.B., Straume, M., Chang, H.S., Han, B.,

Zhu, T., Wang, X., Kreps, J.A., Kay, S.A., 2000. Orchestrated

transcription of key pathways in arabidopsis by the circadian clock.

Science 290 (5499), 2110–2113.

Hartman, P., 1964. Ordinary Differential Equations. Wiley, New

York.

Hwang, J.T., Dougherty, E.P., Rabitz, S., Rabitz, H., 1978. The

green’s function method of sensitivity analysis in chemical kinetics.

J. Chem. Phys. 69 (11), 5180–5191.

Johnson, C.H., Elliott, J.A., Foster, R., 2003. Entrainment of

circadian programs. Chronobiol. Int. 20 (5), 741–774.

Lee, K., Loros, J.J., Dunlap, J.C., 2000. Interconnected feedback loops

in the neurospora circadian system. Science 289 (5476), 107–110.

Leloup, J.C., Goldbeter, A., 2003. Toward a detailed computational

model for the mammalian circadian clock. Proc. Natl Acad. Sci.

USA 100 (12), 7051–7056.

Leloup, J.C., Gonze, D., Goldbeter, A., 1999. Limit cycle models for

circadian rhythms based on transcriptional regulation in droso-

phila and neurospora. J. Biol. Rhythms 14 (6), 433–448.
Oster, H., Yasui, A., van der Horst, G.T., Albrecht, U., 2002.

Disruption of mcry2 restores circadian rhythmicity in mper2

mutant mice. Genes Dev. 16 (20), 2633–2638.

Ostlund, S., Rand, D., Sethna, J., Siggia, E., 1983. Universal properties

of the transition from quasi-periodicity to chaos in dissipative

systems. Physica D 8 (3), 303–342.

Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D.,

Albrecht, U., Schibler, U., 2002. The orphan nuclear receptor

rev-erbalpha controls circadian transcription within the

positive limb of the mammalian circadian oscillator. Cell 110 (2),

251–260.

Press, W.H., Flanner, B.P., Teukolsky, S.A., Vetterling, W.,

1988. Numerical Recipes in C. Cambridge University Press,

Cambridge.

Reddy, A.B., Field, M.D., Maywood, E.S., Hastings, M.H., 2002.

Differential resynchronisation of circadian clock gene expression

within the suprachiasmatic nuclei of mice subjected to experimental

jet lag. J. Neurosci. 22 (17), 7326–7330.

Rensing, L., Ruoff, P., 2002. Temperature effect on entrainment, phase

shifting, and amplitude of circadian clocks and its molecular bases.

Chronobiol. Int. 19 (5), 807–864.

Roenneberg, T., Merrow, M., 2003. The network of time: under-

standing the molecular circadian system. Curr. Biol. 13 (5),

R198–207.

Ruoff, P., 2000. Temperature compensation in biological oscillators: a

challenge for joint experimental and theoretical analysis. Com-

ments Theor. Biol. 5 (6), 361–382.

Smolen, P., Baxter, D.A., Byrne, J.H., 2001. Modeling circadian

oscillations with interlocking positive and negative feedback loops.

J. Neurosci. 21 (17), 6644–6656.

Tyson, J.J., Hong, C.I., Thron, C.D., Novak, B., 1999. A simple model

of circadian rhythms based on dimerization and proteolysis of per

and tim. Biophys. J. 77 (5), 2411–2417.

Ueda, H.R., Hagiwara, M., Kitano, H., 2001. Robust oscillations

within the interlocked feedback model of drosophila circadian

rhythm. J. Theor. Biol. 210 (4), 401–406.

Winfree, A., 2001. The Geometry of Biological Time. Springer, New

York.

Young, M.W., Kay, S.A., 2001. Time zones: a comparative genetics of

circadian clocks. Nature Rev. Genet. 2 (9), 702–715.

Zheng, B., Albrecht, U., Kaasik, K., Sage, M., Lu, W., Vaishnav, S.,

Li, Q., Sun, Z.S., Eichele, G., Bradley, A., Lee, C.C., 2001.

Nonredundant roles of the mper1 and mper2 genes in the

mammalian circadian clock. Cell 105 (5), 683–694.


	Uncovering the design principles of circadian clocks: Mathematical analysis of flexibility and evolutionary goals
	Introduction
	Key clock characteristics
	Robust entrainment by environmental signals

	Flexibility and evolutionary accessibility
	The approach via targeted parameter variations
	Singular values and the flexibility dimension

	The approach via random variations of parameters
	Principal components: the optimal orthogonal basis for projecting the outputs  Q^( )
	Definition of the clockaposs flexibility dimension

	Inflexibility of circadian clock models
	Floquet exponents and decay of the singular spectrum
	Sources of flexibility
	Principal components
	Phase adjustments and homotopies to weak coupling


	Infinitesimal response curves
	IRCs and phase response curves (PRCs)

	Evolutionary aims and IRCs
	Entrainment
	Temperature compensation
	Robustness to parameter perturbations
	Output pathways amplitudes and phases
	Robustness to stochastic perturbations

	Discussion and future prospects
	Acknowledgments
	Proofs of results relating flexibility and singular values
	Proof of Theorem 2
	Proof of Theorem 3 relating the principal components, the SVD of M^  and the cone C^ ( ,k)

	Perturbations of the limit cycle and proofs about IRCs
	Perturbations and IRCs: Unforced (free-running) case
	Setting up an appropriate coordinate system

	Entrained forced case
	Calculation of the circle perturbations
	Perturbations and Floquet multipliers
	Proof that IRC for period gives a PRC

	Numerical calculation of IRCs and intelligent orienteering in parameter space
	References


