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Input signals to the plant circadian clock
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Abstract

Eukaryotes and some prokaryotes have adapted to

the 24 h day/night cycle by evolving circadian clocks,

which now control very many aspects of metabolism,

physiology and behaviour. Circadian clocks in plants

are entrained by light and temperature signals from

the environment. The relative timing of internal and

external events depends upon a complex interplay of

interacting rhythmic controls and environmental

signals, including changes in the period of the clock.

Several of the phytochrome and cryptochrome photo-

receptors responsible have been identi®ed. This

review concentrates on the resulting patterns of

entrainment and on the multiple proposed mechan-

isms of light input to the circadian oscillator

components.
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Introduction

Interfaces spawn wonders that are missing from the
hinterlands, in evolution, in cuisine and in research. The
circadian system is at an interface in the signalling
network, between environmental response pathways and
internal programmes. The chefs ®nd `fusion' at their
interfaces, academics speak of `interdisciplinarity' or they
write of it to avoid the tangled syllables. Researchers in
circadian rhythms are uncovering the signalling web that
sets the endogenous clock to local time. The generic term
for this process is `entrainment' and it affects both
recurring, daily adjustments (at what time should petals
open?) and once-in-a-lifecycle decisions (when should an
annual plant make the transition to ¯owering?). Signalling
cross-talk in plants may be understood as a computation
that combines internal and external input signals: the

interface between the clock and the environment is a
fascinating example.

Circadian clocks evolved as an adaptation to the planet's
24 h rotation and its attendant rhythms of light and
temperature on the Earth's surface (Harmer et al., 2001;
Young and Kay, 2001). Photo-autotrophic organisms must
be exposed to sunlight for photosynthesis, so all plants are
exposed to the day/night cycles, with the possible
exceptions of buried, germinating seedlings and polar
inhabitants. The circadian system allows organisms to
anticipate these regular cycles, timing biological processes
to a part of the cycle (a phase) that bene®ts from external
light or warmth, or the absence of con¯icting internal
processes. This feat requires some detachment from the
¯uctuating present conditions. The 24 h biological rhythms
that the circadian clocks control are not direct responses to
any external factor and persist even under constant
environmental conditions, with a period that often differs
from 24 h. Being thus detached, the circadian system
retains information from days past. Detachment cannot be
complete or the rhythmic processes would never match the
external opportunities, so entrainment of circadian clocks
is crucial and is similar in all organisms. Molecular
research on plant circadian rhythms is most advanced in
Arabidopsis thaliana, though their physiology was largely
de®ned in other species including Ipomoea nil (Pharbitis
nil), KalanchoeÈ spp. and Phaseolus spp. (BuÈnning, 1935;
Lumsden et al., 1995; Engelmann et al., 1998; Borland
et al., 1999); recent studies have also developed molecular
understanding in rice (Sugiyama et al., 2001).

Plant circadian rhythms

Microarray experiments indicate that at least 6% of
Arabidopsis genes are rhythmically expressed, with
expression peaks at all phases throughout the day and
night (Harmer et al., 2000; Schaffer et al., 2001). The
circadian gene expression produces rhythms that pervade
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plant physiology, some of which are obvious (such as the
`sleep movements' of legume leaves, noted since classical
times), others less so. In several cases, genes that affect a
common pathway or process are expressed at the same
phase, suggesting that the phase might be important for the
function of that process. Many genes encoding enzymes of
phenylpropanoid biosynthesis had peak RNA levels before
dawn, perhaps because it is advantageous to accumulate
photoprotective ¯avonoids before the sun rises (Harmer
et al., 2000). A large proportion of the rhythmically
regulated genes also directly respond to environmental
stress (Kreps et al., 2002). Rhythmic expression of these
genes in anticipation of predictable environmental changes
might thus prepare the plant to withstand a stress (or make
best use of a resource), so circadian regulation would
complement the plant's subsequent response to the stress.
Recent experimental evidence can be interpreted to
support this view (Green et al., 2002) and more is likely
to follow from studies of Arabidopsis clock mutants and
natural variants. Photoperiodism is a special case, in which
a circadian rhythm is combined with light signalling. The
photoperiod sensor allows plants to respond to the annual
cycle of day length, by making ¯owers, tubers or frost-
tolerant buds at appropriate seasons. The selective advant-
ages of correct seasonality are very clear; recent reports
have signi®cantly enhanced understanding of this mechan-
ism (a recent review is Hayama and Coupland, 2003).
Correct entrainment is crucial for photoperiodism, indeed
general physiology indicates that a key difference between
light-dominant plants (most of which ¯ower in long days)
and dark-dominant plants (most of which ¯ower in short
days) is in the entrainment of their photoperiodic rhythm
(Thomas and Vince-Prue, 1996).

The molecular clock mechanism

The known clock mechanisms of mammals, insects, fungi,
cyanobacteria, and plants include a gene circuit with negative
feedback, involving 24 h rhythms in the levels of positively
and negatively acting transcriptional regulators (Harmer
et al., 2001; Young and Kay, 2001). These `clock genes' or
`clock-associated genes' maintain the molecular oscillation
that drives all other circadian rhythms. Any pathway that
entrains the circadian clock must affect the expression of at
least one of these clock components. The molecular
components of the clock seem distinct to each taxon, so the
shared architecture has arisen at least four times in evolution,
providing a rich basis for comparative research. Their
mechanisms of entrainment are quite different. Mammals
and insects share several orthologous clock genes; light
signals by activating the transcription of Per genes in
mammals, but by inducing the degradation of a different
protein, Timeless, in Drosophila (Young and Kay, 2001).

The candidate oscillator components in Arabidopsis are
two small gene families founded by the DNA-binding

proteins LHY and CCA1 (Schaffer et al., 1998; Wang and
Tobin, 1998), and the pseudo-response regulator protein
TOC1 (Matsushika et al., 2000; Strayer et al., 2000). The
®rst reasonable model to link these components explicitly
(Alabadi et al., 2001) can be summarized as follows
(reviewed in Hayama and Coupland, 2003; Eriksson and
Millar, 2003): LHY and CCA1 are expressed rhythmically
with a circadian peak around dawn and are also rapidly
light-induced. The cognate proteins are produced within
2±3 h, they bind to and inhibit transcription from the TOC1
promoter. As LHY and CCA1 protein levels fall towards
the end of the day, TOC1 RNA abundance rises and is
maintained until the middle of the night. TOC1 transcrip-
tion is not acutely regulated by light. TOC1 protein is
proposed to activate LHY and CCA1 transcription, perhaps
indirectly. This model captures a number of data sets but is
incomplete; notably, lhy;cca1 double mutants that lack
both gene functions were shown to retain a short-period
rhythm (Alabadi et al., 2002; Mizoguchi et al., 2002).
Overexpression of CCA1 or LHY abolishes all rhythms yet
tested (Schaffer et al., 1998; Wang and Tobin, 1998), with
the possible exception of rhythmic expression of the
EARLY-FLOWERING 3 (ELF3) gene (Hicks et al., 2001):
the signi®cance of the latter datum remains to be
determined. The mechanisms of LHY and CCA1 activation
are unknown, but require at least three further genes that
are expressed at around the same phase as TOC1; ELF4,
for example, encodes a 111-residue protein without
obvious sequence homologies (Doyle et al., 2002).
Further genes, such as TIME FOR COFEE (TIC), regulate
LHY, CCA1 and TOC1 expression and profoundly affect
the circadian system, although they have yet to be cloned
and sequenced (Hall et al., 2003). Among the genes
described in this paragraph and their products are the
molecular targets for entrainment.

Environmental signals for entrainment

Nature provides a very complex set of signals over the day/
night cycle, including variation in temperature, light
quality and light quantity at varying rates of change.
Thus a combination of signals in the day/night cycle resets
the clock reliably, entraining it to match the environmental
cycle. If the circadian clock were delayed relative to the
environment, biological processes would occur later than
normal, so entrainment must advance the phase of the
clock. By contrast, a circadian clock that was advanced
relative to the environment would trigger rhythmic
processes too early, so entrainment must delay its phase.
A phase delay in each successive cycle results in a change
of period. This would be required, for example, to entrain
the 21 h circadian clock of the fungus Neurospora crassa
to a 24 h day/night cycle.

The assays used to study entrainment in the laboratory
focus on single stimuli, for example, a brief pulse of light
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in otherwise constant darkness. Such a transient signal
affects the oscillator components transiently, resulting in a
change of phase: the clock is advanced or delayed,
sometimes by many hours. By contrast, exposure to
constant light affects the oscillator components all the
time, thus altering the circadian period compared to
constant darkness. One of the most detailed and revealing
experiments measures the phase-response curve (PRC): a
test pulse of light or temperature is applied at all possible
phases across the circadian cycle in otherwise constant
darkness, showing how the clock responds to light at each
point. In some cases, the details of entrainment can be
predicted from the PRC alone. A substantial part of the
classical literature of circadian biology investigates this
area, showing why the PRC for light pulses has a
characteristic shape in all organisms, for example
(Johnson, 1999). Entrainment of the circadian clock is a
particular case in the mathematical ®eld of dynamical
systems. Circadian entrainment is one of the areas of
biology where mathematical predictions have been tested
experimentally and con®rmed (Winfree, 1987, gives a
simple account with good graphics).

Temperature

All circadian rhythms can be entrained by warm/cold
cycles; Arabidopsis rhythms entrain well to temperature
cycles in which day and night temperatures differ by 4 °C
or less. These have been used experimentally to test
whether the defects of circadian mutants were speci®c to
light signalling: the phenotype of the toc1-1 allele was not
(Somers et al., 1998; but see Mas et al., 2003), whereas the
phentoype of elf3 and phyB mutants was (McWatters et al.,
2000; Salome et al., 2002). A detailed phase response
curve to temperature pulses was recently published
(Michael et al., 2003). However, understanding of the
entrainment mechanism is in its infancy and presents
different problems with light entrainment: potential
photoreceptors are rare but all biochemical reactions are
temperature-sensitive so potential thermosensors might be
common. Intriguing new evidence indicates that photo-
receptor signalling can be temperature sensitive (Mazzella
et al., 2000; Halliday et al., 2003), which raises the
possibility that light-sensing and temperature-sensing are
interdependent in plants.

Light

Light signalling pathways from both phytochrome and
cryptochrome photoreceptors regulate clock components
to achieve entrainment in plants (reviewed in Fankhauser
et al., 2002). The phytochromes (phy) respond to red and
far-red light, whereas the cryptochromes (cry) absorb in the
UV-A/blue wavelengths. Arabidopsis has ®ve phyto-
chrome genes, PHYA±PHYE (Nagy et al., 2002; Quail,
2002) and two cryptochromes, CRY1 and CRY2 (Lin,
2002). The cry's and phy's together account for almost all

of de-etiolation: a cry1;cry2;phyA;phyB quadruple mutant
develops almost as an etiolated seedling in white light,
even though it retains the three minor phytochromes, phyC,
phyD and phyE. Notwithstanding its striking morphology,
the mutant exhibits entrained and free-running circadian
rhythms of leaf movement. This suggests that free-running
circadian rhythms do not require input from the major
photoreceptors (Yanovsky et al., 2000).

Arabidopsis plants in constant light (i.e. the `stand-
ard' laboratory conditions of white ¯uorescent light at
c.100 mmol m±2 s±1) have a period close to 24 h,
whereas the period can exceed 30 h after several days
in darkness (Millar et al., 1995). Much recent work has
used the period assay to de®ne which photoreceptors
affect the clock, under which lighting conditions: this
work has been reviewed extensively elsewhere
(Somers, 1999; Yanovsky and Kay, 2001; Devlin,
2002). The major photoreceptors involved in de-
etiolation all signal to the seedling clock, shortening
its period under red light (phyA and phyB, but also to
a lesser extent D and E; phyC has not been tested in
detail) and blue light (cry1 and cry2). There are two
types of overlap between the phy and cry pathways.
Firstly, phyA accumulates to such high levels under
very low light conditions that its minor absorption of
blue light causes signi®cant period shortening.
Secondly, and more intriguingly, cry1 is required for
the wild-type response to low red light, although its
absorption spectrum has no peak in the red: the current
suggestion is that phyA signalling requires functional
cry's in a non-photoreceptor role (Devlin et al., 2000).
Further photoreceptor interactions have been described
from molecular and/or genetic assays, though their
impact on the clock is not yet clear.

Ten years after work started on Arabidopsis rhythms, the
®rst phase-response curves were published (Covington
et al., 2001; Devlin et al., 2001). Previous work on other
plant species had shown that plant phase responses shared
the common pattern from other organisms (reviewed in
Engelmann and Johnsson, 1998). A light pulse causes little
phase change during the middle of the subjective day but,
in the evening, light delays the clock and light in the
morning advances it, with an apparent transition from large
delays to large advances in the middle of the night. PRCs
are therefore extremely revealing and allow detailed
predictions of entrainment patterns. However, many of
the rhythms used in Arabidopsis, such as CAB gene
expression, are related to photosynthesis and rapidly lose
amplitude in darkness. This complicates the phase-
response experiments, which normally involve giving a
single light pulse in prolonged darkness: after a couple of
days, there was no longer a rhythm to measure. The
development of a marker that was stably rhythmic for
many days in darkness, CCR2 gene expression, allowed
the measurement of PRCs for 1 h light pulses, administered
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to dark-adapted plants (Covington et al., 2001). Red and
blue light gave similar results, again suggesting that both
phy and cry photoreceptors participate. Repeating these
experiments in photoreceptor mutants and with different
amplitudes of light pulse should now identify the particular
contribution of each photoreceptor species, but eventually
assays will be required that include the more complex
crepuscular light conditions found in nature.

Targets for light signalling?

Light input must affect a component of the oscillator if it is
to reset the clock. De®ning the targets of entrainment in the
plant clock remains a challenge, although not for lack of
candidates (Kim et al., 2003a). The ®rst potential
mechanism can be described as the `PIF3 hypothesis'
(reviewed in Nagy et al., 2002). In summary, phyto-
chrome-interacting factor 3 (PIF3) is a DNA-binding
protein of the basic helix-loop-helix class. PIF3 dimers
bind directly to promoter fragments of CCA1 and LHY
in vitro, to a G-box sequence that is also present in many
light-activated genes. The light-activated (Pfr) form of
phyB can interact with the promoter-bound PIF3
(Martinez-Garcia et al., 2000). As mutants with altered
PIF3 function affect developmental light responses in vivo,
this was clearly a potential mechanism of photoentrain-
ment. The CCA1 and LHY genes should then be critical for
entrainment, and indeed cca1;lhy loss-of-function mutants
have a very early phase, but they retain light-entrained
circadian rhythms, showing these genes are not uniquely
required. Other considerations also argue for further
entrainment mechanisms: CCA1 and LHY proteins fall
to very low levels by the end of a 12 h day in wild-type
plants (Wang and Tobin, 1998; Kim et al., 2003a), yet
wild-type plants remain sensitive to much longer photo-
periods (see below). The model of PIF3 as a co-activator
of light responses has recently been complicated by results
suggesting that PIF3 antagonizes at least some light
responses (Kim et al., 2003c).

A second possible pathway involves three proteins of
the ZEITLUPE (ZTL) family (Somers et al., 2000), ZTL,
Flavin-binding-Kelch-F-box (FKF) and LOV-Kelch
protein 2 (LKP2). These contain a Period-ARNT-Sim
(PAS)-related domain, similar to the domain that binds a
¯avin chromophore in the phototropin photoreceptors
(Briggs and Christie, 2002). ztl mutant phenotypes are
light-dependent, supporting a possible photoreceptor role.
However, the ZTL protein has the potential to interact with
both phyB and cry1, which might cause light-dependence
more indirectly (Jarillo et al., 2001). The two other
domains of ZTL, an F-box and seven kelch repeats,
suggest an involvement in ubiquitin-mediated protein
degradation (Kim et al., 2003b). The proteins that are
targeted for degradation should soon be identi®ed. If these
include clock-related proteins and the photoreceptor

function is also proven, one or more of the ZTL family
are very likely to function in entrainment.

The four Arabidopsis PSEUDO-RESPONSE
REGULATOR (previously called APRR but more cor-
rectly PRR, Eriksson et al., 2003) genes homologous to
TOC1 prompt other speculation. They are expressed
rhythmically, in an intriguing sequence every 2±3 h
from dawn to dusk, PRR9-PRR7-PRR5-PRR3-TOC1
(Makino et al., 2002). Alterations in TOC1 function
have greater effects on oscillator function than manipu-
lation of individual PRRs (Eriksson et al., 2003), but
their joint function remains to be elucidated in double
mutants. PRR9, PRR5, and TOC1 have light-dependent
effects on the circadian period (Mas et al., 2003;
Eriksson et al., 2003). Three PRRs have been linked to
light signalling in other ways: PRR9 expression is
light-activated but inhibited by overexpression of TOC1
(Makino et al., 2002), PRR7 has been identi®ed as a
modi®er of phytochrome signalling in hypocotyl
elongation (Kaczorowski and Quail, 2003), strong
toc1 mutant alleles can alter light responses (Mas
et al., 2003) and the TOC1 protein can also interact
with PIF3 and related bHLH transcription factors
(Makino et al., 2002). PRRs might thus function in
part downstream of phytochromes, either modifying
phy signalling through PIF3 or in a parallel input
pathway. It is quite possible that the multiple input
photoreceptors affect the plant circadian clock by
several mechanisms.

Rhythmic regulation of light input

The PHY and CRY photoreceptor genes are themselves
targets of circadian regulation at the level of RNA
abundance (Bognar et al., 1999; Hall et al., 2001; Toth
et al., 2001), although any circadian regulation at the
protein level is of much lower amplitude (Bognar et al.,
1999; Sharrock et al., 2002). The phy and cry photo-
receptors are post-translationally modi®ed by phosphoryl-
ation and nuclear translocation (Nagy et al., 2002), so other
types of rhythmic regulation remain possible. Furthermore,
a circadian `gating' pathway rhythmically inhibits the
activity of the light input pathways around subjective dusk,
making the clock less sensitive to light at this phase. The
gating pathway depends upon ELF3 (McWatters et al.,
2000; Covington et al., 2001). Gating is essential for
normal entrainment under long photoperiods and for
continued rhythmicity in constant light, because the
oscillator arrests about 10 h after dawn in elf3 mutants if
light is present (McWatters et al., 2000). The ELF3 protein
can interact with phyB (Liu et al., 2001), potentially
inhibiting its function in the subjective evening. Circadian
clocks in other organisms also have rhythmically gated
light signals (human sleep effectively limits light input, for
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example), but understanding the full effects of gating is not
trivial.

The phase of entrainment

The joint input from all the input pathways entrains the
plant's rhythms to a particular phase relative to the
environmental day/night cycle, known as the phase of
entrainment. The phase of entrainment does not alter the
internal sequence of events, but determines how that
sequence relates to the environmental cycle: does dawn
fall before or after the peak of CCA1 expression, for
example, and does dusk arrive before or after TOC1
expression? Circadian rhythms in nature are always
entrained, so the circadian clock contributes to plant
physiology mainly by regulating the phase of entrained
rhythms: the period of the clock under constant conditions
is rarely, if ever, observed outside the laboratory. Many
parts of the circadian system combine to determine this
phase, not only the light and temperature signalling
pathways but also the circadian oscillator. Variation in
any of these factors should alter the phase of entrainment
and hence the adaptive value of the circadian system, so it
is important to understand how phase is controlled. There
is a rich literature on formal studies of entrainment that
dissect the various contributions of different factors
(Pittendrigh, 1981).

The alteration in photoperiod, which occurs naturally in
the seasonal cycle and alters the phase of entrainment, is
possibly the most physiologically relevant variation. CAB
gene expression peaks at a phase about 40% of the way
through the predicted light interval, independent of the
length of the entrainment photoperiod, when phase is
measured in constant darkness after entrainment to several
cycles of a test photoperiod (Millar and Kay, 1996). This
indicates that dawn and dusk do not `drive' this rhythm,
because its phase would then be a constant time interval
from either dawn or dusk. Rather, at least two signals must
participate in entrainment, from a selection comprising the
sharp transitions at dawn and dusk and the intervals of
continuous light and darkness. Both phy and cry photo-
receptors are presumably involved in setting the phase
under white light:dark cycles. A 2 h early phase of
entrainment has recently been reported in phyB mutants,
directly implicating phyB in entrainment (Hall et al., 2002;
Salome et al., 2002). More extreme phase changes can be
created experimentally, using non-24 h cycles (so-called T
cycle experiments, used extensively in Roden et al., 2002).
The timing of cab expression 1 mutant (toc1-1) has a
period of approximately 21 h, for example, so under 24 h
entraining cycles it entrains at an earlier phase than wild-
type plants with a period of ~24.5 h. Under 21 h
environmental cycles, however, toc1-1 plants have a
normal phase of entrainment (Somers et al., 1998;
Yanovsky and Kay, 2002).

Applications and challenges

Studies in cyanobacteria show that clock mutants gain a
competitive growth advantage under light:dark cycles that
match their circadian period. If and only if it has a normal
phase of entrainment, a clock mutant can outgrow the wild
type (Ouyang et al., 1998). Retaining an optimal phase of
entrainment very likely drives balancing natural selection
on clock genes, which should be revealed in the extensive
natural variation for circadian period in wild Arabidopsis
accessions and among crop varieties (our unpublished
results; BuÈnning, 1935; Swarup et al., 1999). Given this
variation and the wide range of processes under circadian
control, crop performance might be improved by matching
circadian rhythms to local growing conditions.

More detailed understanding of entrainment will be
required to predict the behaviour of a particular variety, for
a particular rhythm of interest. Mathematical modelling
will grow in importance, given the complexity of the
interactions involved. The ¯exibility and diversity of the
circadian system will also call for much more carefully-
de®ned experiments. In one paradoxical development,
entrainment has been shown to affect the period of
subsequent circadian rhythms under constant conditions.
This phenomenon, termed an after-effect of entrainment,
has been classically described in mammals, but was
recently reported in Arabidopsis (Roden et al., 2002;
Michael et al., 2003). The use of different rhythms to test
entrainment in different assays is raising a different
problem. Very many (if not all) plant cells have a
functional circadian system and input photoreceptors.
The clocks controlling the expression of genes in different
anatomical locations are functionally independent and
their periods differ slightly, probably re¯ecting differences
among the cell types involved (Sai and Johnson, 1999;
Thain et al., 2000, 2002; Hall et al., 2002; Michael et al.,
2003). This issue was highlighted all too clearly by
experiments on CAB expression in wheat and tobacco
seedlings in the ®rst days after germination (Kolar et al.,
1998, and references therein): two oscillators controlled a
biphasic rhythm, but only one of the clocks was reset by a
light pulse. As entrainment studies become more detailed
and quantitative, it will be necessary to de®ne which, and
how many, circadian clocks are being studied.
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Note added in proof

PRR3 and PRR7 are shown to modulate circadian period, at least in
the light, by a recent article by Michael et al. (2003).
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