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From a closer and purer league betweenythe experimental
and the rationalymuch may be hoped. (Bacon, 1620)

Although Francis Bacon proposed the benefits of interdisci-
plinary science in 1620, only recently have molecular
biologists and mathematicians talked with any frequency.
Although no modern biologist would deny the validity
of computational approaches in biology—just look at the
burgeoning field of Genomics—how useful mathematical
modeling will be to biologists remains debated (Lawrence,
2004; Tyson, 2004). An answer may be here with a study in this
issue of MSB by Locke et al (2005), which highlights the
advantages of being able to work effectively with models and
molecules.

The study by Locke et al (2005) focuses on circadian
rhythms, daily rhythms of behavior and physiology found in
most organisms. These rhythms range from human sleep/
wake cycles to leaf movements in plants. The cyclical nature
and the precision of these internally driven rhythms has
intrigued mathematicians and biologists alike. Yet despite
working on the same questions for decades, most circadian
molecular biologists have not embraced mathematical model-
ing. The following dialogue highlights similarities and differ-
ences in the views of a biologist (B) and a mathematician (M):

B: I don’t understand how ‘Math-Biology’ will help my
research—mathematical models seem more descriptive than
predictive.
M: Well, I have an excellent paper for you to read in which the
authors move freely between computer simulations and
experiments. Locke et al (2005) used experimental data to
build a model, and then tested whether this model could
predict other experimental data not initially included. Their
initial model had only three genes in the network and did not
match the in vivo data—so Locke et al added hypothetical
components to make the model more accurate. Their simula-
tions worked so well that they were able to return to
experiments and identify a strong candidate for one of the
hypothetical components.
B: That does sound useful. What were they modeling?
M: The Arabidopsis circadian clock.
B: Oh yes, I read about that. I can guess which genes they
started with: TIMING OF CAB EXPRESSION 1 (TOC1), LATE
ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK
ASSOACIATED I (CCAI). Experiments have shown that TOC1
activates LHY and CCA1 expression, and that LHY and CCA1
proteins then feed back to inhibit TOC1 expression and,
consequently, to inhibit further LHY and CCA1 expression

(Alabadi et al, 2001). A classical clock negative feedback loop.
In fact, the clocks in Drosophila and mammals have two
of these transcription/translation feedback loops interlocked
with one another (Hardin, 2004).
M: Yes, that’s right. In their paper, Locke et al found that the
single TOC1/LHY/CCA1 loop could not explain data that they
measured in vivo, such as weak residual 18 h rhythms in
plants with both lhy and cca1 mutated. So they added a second
loop to the Arabidopsis clock, and their simulations were
much more accurate.
B: But there are two loops in the Drosophila and mammalian
circadian clocks (Hardin, 2004), so is it really a surprise to find
the same in plants? That does not seem very predictive.
M: Wait: The authors’ simulations predicted that RNA levels
of ‘Factor Y’, the key player in the second loop of their
model, would show two peaks of expression every day—
a burst of expression at dawn, and a broader peak at dusk.
Then they went back to the bench and looked at the expression
profiles of a number of genes known to affect circadian gene
expression but which had not yet been fitted into the molecular
clock network. Since they were looking for a very brief peak
of RNA at dawn, they designed their experiments to sample
every hour around dawn and then less frequently over the
rest of the day.
B: And?
M: They found one gene, GIGANTEA (GI), whose expression
paralleled the rhythms of Factor Y.
B: So is GI Factor Y?
M: Probably, because gi mutants have low amplitude
molecular clock oscillations (Mizoguchi et al, 2002). It is
a very strong candidate, but we will need experiments to
test this.
B: Great! But how did Locke et al design an accurate model
without knowing the abundance or half-lives of any of these
proteins?
M: This is a called an inverse problem in Mathematics and,
rather than starting with known parameters, they have to be
chosen to match experimental data. Then one runs simula-
tions to see if the model fits experimental data. This type of
parameter sampling is widespread in other areas of mathema-
tical modeling and was used to model the mammalian
circadian clock (Forger and Peskin, 2003). When I said that
Locke et al’s one-loop model did not match the experimental
data, I meant that they could not find a set of parameters that
would simulate the experimental data.
B: I see. So does all of this mean that I should run a simulation
before my next experiment? Not a chance!
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M: Funny that you say that. This is one of the implications of
Locke et al’s study—that simulations can help design great
experiments. Remember, circadian expression profiles for
much of the Arabidopsis genome have been available for
nearly 5 years (Harmer et al, 2000), but the dawn peak of GI
expression was missed because the sampling times were every
four hours. I don’t know if anyone would have caught this
early GI peak unless they sampled at one hour intervals. So
simulations were invaluable in this case. You know, there are
models and interactive, user-friendly tools for biologists to
run simulations on the Web—for example, www.amillar.org/
Downloads.html, www.sbml.org or www.BioSpice.org.
B: But how would I know which model to use? It is a long time
since I studied Mathematics.
M: You need to look for rigor in the model: Biological rigor—
the modeler should precisely state all biological assumptions;
Mathematical rigor—the modeler should describe exactly
how these assumptions were converted into equations;
and Numerical rigor—the modeler should justify how these
equations were solved. And the model that most accurately
reflects the biology may be complex. If the underlying biology
is complex (many proteins, many cells, etc.), then do not
expect a simple model.
B: But do you really think that this can help Biology in general?
We already know about so many genes and so many pathways.
M: That is my main point. As biologists find increasing
numbers of components in pathways, computer simulations
will be needed to identify their relationships. With mathema-
tical modeling, diagrams of interactions between genes and
proteins take on analytical power, and can reveal insights
missed by verbal reasoning. Use the power of computers for all
kinds of biological research, not just for circadian biology—or
at least ask people like me for help! And although we know a
lot of genes in some networks, we do not understand how they
work as a system. For example, how do circadian clocks keep
24 h rhythms across a range of temperatures when individual
biochemical reactions are temperature-dependent?

B: Okay, last question. The Arabidopsis clock loop had one loop
yesterday, and two today. Modelers constructed simulations of
the Drosophila and mammalian clocks that were rhythmic with
just one loop, and then added a second loop when new
components were identified (Leloup et al, 1999; Leloup and
Goldbeter, 2003). Do you think you could predict how many
feedback loops there are in a circadian clock? Two, three, four?
M: Good question. Let me get back to you on that oney
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Extension of a genetic network model by iterative experimentation and 
mathematical analysis 

Extended Synopsis 
 
This study involves an iterative approach of 
mathematical modelling and experiment to 
develop an accurate mathematical model of the 
circadian clock in the higher plant Arabidopsis 
thaliana. Our approach is central to systems 
biology and should lead to a greater, quantitative 
understanding of the circadian clock, as well as 
being more widely relevant to research into 
genetic networks.  
 
The day-night cycle caused by the Earth’s rotation 
affects most organisms, and has resulted in the 
evolution of the circadian clock. The circadian 
clock controls 24-hour rhythms in processes from 
metabolism to behaviour; in higher eukaryotes, 
the circadian clock controls the rhythmic 
expression of 5-10% of genes. In plants, the clock 
controls leaf and petal movements, the opening 
and closing of stomatal pores, the discharge of 
floral fragrances and many metabolic activities, 
especially those associated with photosynthesis. 
 
The relatively small number of components 
involved in the central circadian network makes it 
an ideal candidate for mathematical modelling of 
complex biological regulation. Genetic studies in a 
variety of model organisms have shown that the 
circadian rhythm is generated by a central 
network of between 6-12 genes. These genes 
form feedback loops generating a rhythm in 
mRNA production. One negative feedback loop in 
which a gene encodes a protein that, after several 
hours, turns off transcription is, in principle, 
capable of creating a circadian rhythm. However, 
real circadian clocks have proven to be more 
complicated than this, with interlocked feedback 
loops. Networks of this complexity are more easily 
understood through mathematical modelling.  
 
The clock mechanism in the model plant, 
Arabidopsis thaliana, was first proposed to 
comprise a feedback loop in which two partially 
redundant genes, LATE ELONGATED 
HYPOCOTYL (LHY) and CIRCADIAN CLOCK 
ASSOCIATED 1 (CCA1), repress the expression 
of their activator, TIMING OF CAB EXPRESSION 
1 (TOC1). We previously modelled this 
preliminary network and showed that it was not 
capable of recreating several important pieces of 
experimental data (Locke et al. 2005). Here, we 
extend the LHY/CCA1-TOC1 network in new 
mathematical models. To check the effects of 
each addition to the network, the outputs of the 
extended models are compared to published data 
and to new experiments. 
 
As is the case for most biological networks, the 
parameter values in our model, such as the 

translation rate of TOC1 protein, are unknown. 
We employ here an optimisation method which 
works well with noisy and varied data and allows a 
global search of parameter space. This should 
ensure that the limitations we find in our networks 
are due to the network structure, and not to our 
parameter choices.  
 
Our final interlocked feedback loop model requires 
two hypothetical components, genes X and Y 
(figure 4), but is the first Arabidopsis clock model 
to exhibit such a good correspondence with 
experimental data. The model simulates a 
residual short-period oscillation in the cca1;lhy 
mutant, as characterised by our experiments. No 
single loop model is able to do this. Our model 
also matches experimental data under constant 
light conditions and correctly senses photoperiod.  
The model predicts an interlocked feedback loop 
structure similar to that seen in the circadian clock 
mechanisms of other organisms.  
 
The interlocked feedback loop model predicts a 
distinctive pattern of Y mRNA accumulation in the 
wild type (WT) and in the cca1;lhy double mutant, 
with Y mRNA levels increasing transiently at 
dawn. We designed an experiment to identify Y 
based on this prediction. GIGANTEA (GI) mRNA 
levels fit very well to our predicted profile for Y 
(figure 6), identifying GI as a strong candidate for 
Y.  
 
The approach described here could act as a 
template for experimental biologists seeking to 
extend models of small genetic networks. Our 
results illustrate the usefulness of mathematical 
modelling in guiding experiments, even if the 
models are based on limited data. Our method 
provides a way of identifying suitable candidate 
networks and quantifying how these networks 
better describe a wide variety of experimental 
measurements. The characteristics of new 
putative genes are thereby obtained, facilitating 
the experimental search for new components. To 
facilitate future experimental design, we provide 
user-friendly software that is specifically designed 
for numerical simulation of circadian experiments 
using models for several species (Brown 2004b). 
 
Locke et al., Mol. Sys. Biol. 2005, 28 June. 
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Circadian clocks involve feedback loops that generate rhythmic expression of key genes. Molecular
genetic studies in the higher plant Arabidopsis thaliana have revealed a complex clock network. The
first part of the network to be identified, a transcriptional feedback loop comprising TIMING OF
CAB EXPRESSION 1 (TOC1), LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK
ASSOCIATED 1 (CCA1), fails to account for significant experimental data. We develop an extended
model that is based upon a wider range of data and accurately predicts additional experimental
results. The model comprises interlocking feedback loops comparable to those identified
experimentally in other circadian systems. We propose that each loop receives input signals from
light, and that each loop includes a hypothetical component that had not been explicitly identified.
Analysis of the model predicted the properties of these components, including an acute light
induction at dawn that is rapidly repressed by LHYand CCA1. We found this unexpected regulation
in RNA levels of the evening-expressed gene GIGANTEA (GI), supporting our proposed network and
making GI a strong candidate for this component.
Molecular Systems Biology 28 June 2005; doi:10.1038/msb4100018
Subject Categories: metabolic & regulatory networks; plant biology
Keywords: biological rhythms; gene network; mathematical modelling; parameter estimation

Introduction

A circadian system that generates biological rhythms with a
period of approximately 24 h is found in organisms ranging
from cyanobacteria to mammals. The system is capable of
sustained oscillations under constant environmental condi-
tions and maintains synchrony with the environment by
entraining to rhythmic cues of the day/night cycle, especially
input signals from light. Circadian rhythms allow diverse
biological processes to occur at times in the day/night cycle
(phases) that confer a selective advantage: it might be
important, for example, that a particular process occurs in
anticipation of a light/dark transition. The molecular mechan-
ism of the circadian clock has been studied in several model
organisms. A shared feature of these systems appears to be that
the rhythms are generated by the interactions of rhythmically
expressed genes that form positive and negative feedback
loops (Dunlap, 1999).

Computational models of these feedback loops have been
developed for a variety of organisms including the fungus
Neurospora crassa (Leloup et al, 1999; Ruoff et al, 2000, 2001),
the fruitfly Drosophila melanogaster (Tyson et al, 1999; Ueda
et al, 2001; Smolen et al, 2004) and the mouse (Forger and
Peskin, 2003; Leloup and Goldbeter, 2003). These models have

shown that, within defined parameter ranges, the regulatory
networks proposed from experimental data are capable of
reproducing the main characteristics of circadian rhythms.
Simple models indicate that a single feedback loop is sufficient
to generate robust 24 h oscillations (Leloup et al, 1999; Ruoff
et al, 2000, 2001), although the experimental data show that
a series of interlocked feedback loops are important for
generating the observed circadian rhythms (Glossop et al,
1999; Lee et al, 2000). It is an open question why circadian
systems have evolved a more complex structure. Recent
mathematical studies proposed that interlocked feedback
loops increase the flexibility of regulation during evolution
(Rand et al, 2004) and enhance precision (Stelling et al, 2004).

In higher plants, the circadian system controls many
processes, including leaf movement, photoperiodism, and
photosynthesis. The first part of the clock mechanism in
Arabidopsis to be identified was proposed to comprise a
feedback loop, in which two partially redundant genes
encoding similar DNA-binding proteins, LATE ELONGATED
HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1
(CCA1), repress the expression of their activator, TIMING OF
CAB EXPRESSION 1 (TOC1) (Alabadi et al, 2001). We refer
to this single loop as the LHY/CCA1–TOC1 network. Light
can activate LHY and CCA1 expression, possibly by several
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mechanisms (Wang and Tobin, 1998; Martinez-Garcia et al,
2000; Kim et al, 2003), providing a potential pathway for light
input to the clock. Several other rhythmically expressed genes
have been associated with the Arabidopsis circadian system
(reviewed in Eriksson and Millar, 2003). For example, EARLY
FLOWERING 3 (ELF3) (McWatters et al, 2000; Covington et al,
2001), GIGANTEA (GI) (Fowler et al, 1999; Park et al, 1999)
and EARLY FLOWERING 4 (ELF4) (Doyle et al, 2002) are genes
expressed in the evening. Mutations in these genes strongly
affect circadian rhythms and reduce LHY and CCA1 gene
expression, but their functions have not been located in more
detail within the LHY/CCA1–TOC1 network.

The LHY/CCA1–TOC1 network alone did not readily account
for some aspects of circadian behaviour, such as the long delay
between TOC1 transcription in the evening and LHY/CCA1
activation the following morning (Alabadi et al, 2001; Salome
and McClung, 2004). Our previous differential equation model
of the LHY/CCA1–TOC1 loop confirmed that this network
failed to fit certain experimental data and quantitatively tested
a range of its predicted behaviours (Locke et al, 2005). For
example, we showed that the LHY/CCA1–TOC1 loop could not
reproduce the short-period phenotype of plants that carry loss-
of-function mutations in either LHYor CCA1 (Green and Tobin,
1999; Mizoguchi et al, 2002; Locke et al, 2005). The delay
required for the model to fit appropriate phases of gene
expression was estimated at 12 h between TOC1 transcription
and LHY/CCA1 activation (Locke et al, 2005). There is no
obvious mechanism for this delay, reinforcing the suggestion
that TOC1 protein may activate LHY and CCA1 expression
indirectly.

Here, we extend the LHY/CCA1–TOC1 network beyond the
structures inferred solely from data, in new mathematical
models that we use to direct further experimentation. To check
the effects of each addition to the network, the outputs of the
extended models are compared to published data and to the
new experiments. The biochemical parameter values required
in the model are constrained by the time-series data but have
not been measured directly, so we made a global search of
parameter space, in contrast to previous clock models. This
reduces the possibility that problems with the model are due to
a particular set of parameter values, allowing us to focus on the
network structure. The fit of the model to experimental data is
dramatically improved by the addition of two hypothetical
components, X and Y, to the model. Their properties are
predicted; X remains to be identified, whereas experimental
analysis shows that GI has several of the properties predicted
for Y. The model suggests further experiments: we expect that
iterative application of modelling and experiment will facil-
itate a more quantitative understanding of the Arabidopsis
circadian clock.

Results

Limitations of the LHY/CCA1–TOC1 network

Our previous simulations using the single-loop LHY/CCA1–
TOC1 network (Supplementary Figure 1) showed that it was
possible for this network to correctly reproduce the phases of
TOC1 and LHY RNA accumulation in wild type (WT) under
light–dark cycle (LD) 12:12. (In this and subsequent models,

we use a single gene, LHY, to represent both CCA1 and LHY
functions; see Supplementary text.) However, simulated TOC1
RNA levels remained high until LHY protein accumulated,
rather than falling after dusk as observed (Mizoguchi et al,
2002). This was exaggerated by halving the LHY mRNA
translation rate in the simulation (representing lhy or cca1
loss-of function mutants), which incorrectly predicted a long-
period phenotype. Thus, there must be another factor
responsible for reducing TOC1 expression, which is not
modelled by this network (Locke et al, 2005).

Studies of a fluorescent protein, TOC1 fusion protein,
suggest an additional limitation (Mas et al, 2003b). The
TOC1 fusion was shown to be close to its minimum abundance
before dawn under LD12:12, whereas according to the single-
loop LHY/CCA1–TOC1 network, TOC1 should be activating
LHY transcription maximally at that time (Locke et al, 2005).
This suggests that either the active form of TOC1 is present at a
far lower concentration than bulk TOC1 protein, perhaps in a
complex, or that an additional, TOC1-dependent component is
the direct activator of LHY and CCA1.

A third problem is that the LHY/CCA1–TOC1 network did
not respond to day length (simulated gene expression profiles
were identical in LD cycles with long and short photoperiods,
data not shown), whereas it is clear experimentally that the
clock has a later phase under longer photoperiods (Millar and
Kay, 1996; Roden et al, 2002). This limitation occurs because
light input to this network is modelled only by the activation of
LHYexpression at dawn, so the model is insensitive to light at
the end of the photoperiod. Indeed, LHYand CCA1 expression
fall to a low level before the end of a 12 h photoperiod (Kim
et al, 2003), so another mechanism is required to mediate light
input at the end of the day.

Model one—the LHY/CCA1–TOC1–X network

We extended the single-loop LHY/CCA1–TOC1 network by
adding components that would address these limitations, as
directed by the experimental data. After each addition, we
tested network parameters until it became clear that the new
network could not account for further experimental data. We
identified optimal parameters for the most promising of the
extended, single-loop models, which we term the LHY/CCA1–
TOC1–X network (Figure 1). Firstly, light activation of TOC1
transcription was included to provide light input at the end of
the day and, conversely, to reduce TOC1 activation immedi-
ately after lights-off. Secondly, an additional gene X was added
to the network after TOC1, with nuclear X protein as the
immediate activator of LHY instead of nuclear TOC1. Thirdly,
as the F-box protein ZEITLUPE (ZTL) has been shown to
degrade TOC1 protein more effectively during the night (Mas
et al, 2003b), we added this factor into our network equations
(see Supplementary text).

Figure 1 shows the simulated expression profiles for the
LHY/CCA1–TOC1–X network using the optimal parameter set
(Supplementary Table 1). TOC1 RNA levels peak at dusk in WT
under LD12:12, and LHY RNA levels at dawn. The model
allows TOC1 mRNA levels to drop before LHY levels rise, as
observed in experiment. Including gene X within the model
permits simulated TOC1 protein levels to fit well with the
published data (Supplementary Figure 2). ztl mutants were
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modelled by reducing the degradation rates of TOC1 protein in
the cytoplasm and the nucleus by 50%. This results in a long-
period phenotype, with a period of 32 h, similar to or longer
than the period of ztl mutants (Mas et al, 2003b). A prediction
of X mRNA and protein levels is also possible (Supplementary
Figure 2): X mRNA peaks in the middle of the night under
LD12:12 and nuclear X protein levels peak at dawn. Strong x
mutants have the same predicted phenotype as the strongest
phenotype of toc1 loss-of-function mutants, causing arrhyth-
mia due to the lack of LHY activation (data not shown). The
pattern of X mRNA accumulation and its mutant phenotype
are similar to those of characterised genes such as ELF4 (Doyle
et al, 2002). However, this model still incorrectly predicts a
long period in the simulated cca1 single mutant (Supplemen-
tary Table 2) and the strong, LL activation of TOC1 transcrip-
tion causes several problems, for example the model becomes
arrhythmic under LD cycles with long photoperiods (data not
shown).

Experimental characterisation of the cca1;lhy
double mutant

The response of circadian phase to day length (Millar and Kay,
1996; Roden et al, 2002) strongly suggested that the circadian
system receives at least one light input in addition to the
activation of LHY and CCA1 expression, yet simulations with
the LHY/CCA1–TOC1–X network indicated that this was
unlikely to be a simple light activation of TOC1 transcription.
We sought more direct evidence for this light input by
characterising circadian rhythms in the cca1;lhy double loss-
of-function mutant. RNA data for cca1;lhy mutants in constant
conditions show a damping, short-period oscillation (Alabadi
et al, 2002; Mizoguchi et al, 2002), which has been described
as arrhythmia. We repeated these experiments using luciferase

imaging (Figure 2). In the cca1;lhy mutant, promoter activity of
CCA1 and of the clock output genes CCR2 and CAB2 showed an
18 h rhythm for at least three cycles in constant light (LL),
which subsequently lost amplitude. The rhythm is more robust
in LL but is also apparent in constant dark (DD) (Figure 2).
The double mutant retains a regulatory network capable of
supporting rhythmic gene expression.

Reproducible entrainment of the double mutant by LD
cycles was implicit in previous reports, suggesting that
entrainment by light is still possible in the residual network
(Alabadi et al, 2002; Mizoguchi et al, 2002) (Figure 2). To test
this more stringently, we generated a phase transition curve
(PTC) for the WT and double mutant (Figure 3). The PTC
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Figure 2 Expression of CCR2:LUCþ in WT (filled diamonds) and cca1-
11;lhy-21 double mutant (open diamonds) plants in LL (top) and DD (bottom).
Luminescence of each seedling was normalised to its mean value over the entire
time course. Data are averages of normalised luminescence from WT seedlings
in LL n¼16, in DD n¼18, cca1;lhy seedlings in LL n¼13, in DD n¼15. Error
bars represent one s.e.m., often within symbols.

Figure 1 The single-loop LHY/CCA1–TOC1-X network. Left panel:
Network diagram. LHY and CCA1 are modelled as a single gene, LHY
(genes are boxed). Nuclear and cytoplasmic protein levels are grouped for clarity
(shown encircled) and degradation is not shown. Light acutely activates LHY
transcription at dawn and activates TOC1 transcription throughout the day.
TOC1 activates a putative gene X, which in turn activates LHY. Nuclear LHY
protein represses TOC1 transcription. Right panel: Simulation of mRNA levels
for the optimal parameter set. In all figures, filled box above the panel represent
dark interval and open or no box represent light interval. LHY mRNA (dotted line)
peaks at dawn in LD12:12 and TOC1 (solid line) falls after dusk, due to the loss
of light activation.

Figure 3 PTC for WT (left panel) and cca1;lhy double mutant (right panel).
Red light pulses (15 mmol m�2 s�1 for 1 h) were administered at 3 h intervals to
CCR2:LUCþ plants in DD. The new phase of the rhythm induced by the light
pulses was converted to circadian time (CT, 24ths of the free-running period) and
plotted against the circadian time of light treatment (solid lines). Simulated phase
responses are represented by dashed lines, and show simulated response of the
interlocked feedback loop model to a 1 h light pulse. Phase marker for simulation
was TOC1 mRNA peak, compared to CCR2:LUCþ peak in data.
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shows the response of an oscillator to a resetting stimulus and
is plotted as the phase to which the oscillator is set (‘new
phase’), for each phase at which the resetting stimulus is
applied (‘old phase’). In WT, light pulses induced phase delays
during the early subjective night and phase advances during
the late subjective night, whereas relatively small phase shifts
were elicited during the subjective day. The WTshowed a type
1 (weak) resetting pattern with less than 6 h maximal phase
shifts, in contrast to the type 0 (strong) resetting observed in
a previous report (Covington et al, 2001), probably due to the
lower fluence of our light stimulus. In contrast, the double
mutant showed type 0 resetting: irrespective of the phase of the
light stimulus, the clock was reset to a narrow phase range
(circadian time (CT) 20–23). Light input to a residual,
rhythmic network remained without LHY and CCA1 function,
leading us to add a second, light-responsive feedback loop to
produce our final model.

Model two—the interlocked feedback loop network

Removing LHY function from the single-loop models prevents
any oscillation (data not shown), so none of these models can
reproduce the entrainable, damped rhythms observed in
cca1;lhy plants. We therefore developed an interlocked feed-
back loop network that is capable of oscillation in simulated
cca1;lhy double mutants (Figure 4). A hypothetical gene Y
activates TOC1 transcription and TOC1 protein represses Y
transcription, forming a feedback loop. The proposal that
TOC1 has a negative function as well as a positive one is novel.
Light input into this loop occurs via transcriptional activation
of Y rather than of TOC1; there is as yet no evidence of direct

light activation of TOC1 (Makino et al, 2001). Light input to Y
can both be through an acute response at dawn similar to that
for LHYand as a constant activation term throughout the day.
Y is also repressed by LHY, as this allowed the network to fit
the WT as well as the cca1;lhy experimental data. LHY
therefore acts as a powerful delaying factor in the early day,
when it inhibits expression of both TOC1 and Y.

Optimal parameters for the interlocked feedback loop
network (Supplementary Table 3) were identified (see
Computational methods). The optimised model achieved a
good fit to experimental results that were specifically required
by the optimisation process, showing that the proposed
network is sufficient to explain these data. Simulations of the
WT and cca1;lhy mutant using the optimal model fit well to
RNA expression profiles in DD and LD12:12 (Figures 5A
and B). For the WTsimulation (Figure 4), LHY mRNA peaks at
dawn, TOC1 at dusk, and the oscillations follow a stable limit
cycle with a period of 26 h in DD. TOC1 mRNA levels under
LD cycles are shown to increase at dawn. This is due to the
induction of Y by light activating TOC1 expression, over-
coming the repression by LHY protein. The simulation of
cca1;lhy gives a low-amplitude oscillation in DD with a 17 h
period (Figure 4), as observed experimentally (Figure 2).
Under LD12:12, TOC1 mRNA oscillates with an early peak
phase in the double mutant, B5 h after dawn, as specified in
the optimisation. The rhythm of TOC1 expression in the double

Figure 4 The interlocked feedback loop network. Left panel: Network diagram.
Compared to Figure 1, TOC1 is activated by light indirectly via hypothetical gene
Y. Y activates TOC1 transcription and both LHY and TOC1 repress Y
transcription, forming a second feedback loop. Right panel: Simulation of LHY
(dashed line) and TOC1 (solid line) mRNA levels for the optimal parameter set,
representing WT (top) and cca1;lhy double mutant (bottom) in DD. Translation
rate of LHY mRNA in simulated mutant is 1/1000 WT value. Period of WT in DD
is 26 h and period of mutant is 17 h.

Figure 5 Comparison of interlocked feedback loop simulations (dashed line)
under LD to data (solid line). (A) TOC1 mRNA levels in WT plants entrained to
LD12:12, left axis; TOC1 mRNA levels relative to UBIQUITIN (UBQ) (Makino
et al, 2000), right axis. (B) LHY mRNA levels in WT plants entrained to
LD12:12, left axis; data from Kim et al (2003), right axis. (C–E) TOC1 mRNA
levels in WT (C), cca1;lhy mutant (D) and cca1 mutant (E) entrained to
LD16:8; data from Mizoguchi et al (2002). Translation rate of LHY in simulated
cca1 is set to 1/2 WT value. Highest value of data and simulation is set to 1, for
each panel. (F) TOC1 protein levels for WT simulation entrained to LD12:12;
TOC1 fusion protein data from Mas et al (2003b).
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mutant also shows a higher amplitude than WT (Figure 4),
which is observed experimentally (Mizoguchi et al, 2002) but
was not specified during optimisation. Figures 5C and D show
similar expression profiles for simulated and observed
(Mizoguchi et al, 2002) TOC1 mRNA in the WT and cca1;lhy
mutant under LD16:8 (note that normalisation of data and
simulated values obscures the change in amplitude in this
figure). TOC1 mRNA anticipates dawn in the simulation of the
cca1;lhy double mutant, which has not been so clearly
observed in published experimental data and points to an
area for future experimentation.

Analysis and validation of the interlocked
feedback loop network

The interlocked feedback loop model with the optimal
parameters not only fits the above data but its behaviour is
also robust to parameter changes. This is widely thought to be
a realistic requirement for models of biological regulation,
because effective parameter values may be poorly buffered in
biology. Changes in the period and amplitude of TOC1 RNA
oscillation under LL were examined after a 5% increase or
decrease of each parameter value in turn (Supplementary
Figure 3). The resulting change in period varied from 0 to 4%.
As for previous clock models (Smolen et al, 2004; Locke et al,
2005), some parameters are more sensitive to change than
others. The most sensitive parameters are those involved in
TOC1 degradation, X translation and X nuclear transport. The
period and amplitude of this model are much less sensitive
to parameter changes than the single-loop LHY/CCA1–TOC1
model (data not shown), suggesting that some of the
weaknesses of the single-loop model have been overcome.

Simulations using the optimal parameter set also fit well
to several experimental results that were not specified in the
optimisation, giving additional support for the proposed
network structure. This is the first model that fits well to LL
data for LHY and TOC1 mRNA levels. The WT period in LL
is correctly shorter (25 h) than the period in DD (26 h;
Supplementary Figure 4) although this effect is less than that
observed experimentally. The rhythms in LL generally have a
higher amplitude than in DD, as observed. The model correctly
predicts the short-period phenotype of cca1 and lhy single
mutants in LL and DD (Supplementary Table 2), and the early
phase of TOC1 RNA expression in the single mutant under
LD12:12 (Figure 5E). The single mutants were simulated by
halving the LHY mRNA translation rate. Simulated over-
expression of LHY produced arrhythmia with low levels of
TOC1 mRNA (data not shown), as observed in plants that
overexpress LHY or CCA1 (Schaffer et al, 1998; Wang and
Tobin, 1998; Alabadi et al, 2001). Protein levels are also well
fitted: simulated LHY protein levels (data not shown) peak
1–2 h after LHY mRNA levels, as observed (Kim et al, 2003).
Figure 5F compares simulated and measured (Mas et al,
2003b) TOC1 protein levels in WT, showing low levels at dawn
in both cases. The optimal parameter set has minimised the
light regulation of TOC1 degradation (o1% of total TOC1
degradation), indicating that light-regulated degradation (Mas
et al, 2003b) is not required to fit these data. Simulation of ztl
mutants by halving the total TOC1 degradation rate results in a

28 h period phenotype, again similar to that observed in ztl
mutants (Mas et al, 2003b). A simulated toc1 mutant results in
lower levels of LHY mRNA as expected from experiment
(Alabadi et al, 2001), and simulated TOC1 overexpression is
predicted to increase LHY mRNA levels. The observed
decrease in LHY mRNAwhere TOC1 is overexpressed (Makino
et al, 2002; Mas et al, 2003a; Somers et al, 2004) remains
paradoxical, since one would expect overexpressing an
activator of LHY to cause its levels to rise.

Simulations of the WT and cca1;lhy double mutant PTCs
were performed, as shown in Figure 3. Both simulations are
similar to our experimental data, with a type 1 PTC in the WT
and a type 0 PTC in the double mutant. Increasing the light
level in the WT simulation results in a type 0 PTC (data not
shown), as previously observed (Covington et al, 2001). As
expected, the entrained phase of the interlocked feedback
model is photoperiod responsive (Supplementary Figure 5),
with simulated mRNA levels peaking later under longer
photoperiods, as observed (Roden et al, 2002; Yanovsky and
Kay, 2002). Light input to Y allows the network to respond to
light throughout the day. This network will therefore be a good
starting point for models of the photoperiod sensor involved in
flowering time. The photoperiod range of entrainment is
approximately from 3:16 h light for a 24 h period, and the
simulations remain entrained for an approximate period range
of 22–30 h, where half the period is in light and half in dark. At
the end of the ranges, entrainment produces a beat in the
amplitude, although with little effect on phase. The balance of
light input to LHY, Y and ZTL should now be examined in
greater detail to determine how their contributions affect
circadian entrainment.

GIGANTEA is a candidate for Y

The interlocked feedback model predicts a distinctive pattern
of Y mRNA accumulation in the WT and double mutant
(Figure 6). Y mRNA levels peak at the end of the day, but also
increase transiently at dawn due to the acute light response of
Y transcription. This early expression is quickly repressed by
rising LHY protein levels, delaying the peak in Y mRNA level
until after LHY protein is degraded at the end of the day.
Y transcription is then repressed as TOC1 protein levels begin to
rise during the night (Figure 4). In the cca1;lhy double mutant,
however, the light activation of Y at dawn is de-repressed,
resulting in a much stronger activation than in WT, and
causing Y mRNA levels to peak soon after dawn. No gene with
this expression pattern had been observed experimentally.

In order to identify Y, we analysed the transcript abundance
of clock-affecting genes with peak RNA levels in the evening in
WT and cca1;lhy double mutant seedlings. Tissue samples
were harvested across the light–dark transitions in one LD
cycle, followed by one cycle in LL. GI mRNA levels fitted very
well to our predicted mRNA profiles for Y (Figure 6). GI was
shown to be significantly but transiently light activated in the
WTand had a very strong light response in the double mutant.
The subsequent circadian peak also fitted closely to the
prediction for Y mRNA, including the 12 h phase advance in
the mutant relative to WT (Figure 6). The tentative identifica-
tion of Yas GI allowed us to test whether Y in our model fitted
additional, published results for GI; indeed, further data do
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support this proposed function of GI. GI mRNA is at a low,
arrhythmic level in plants that overexpress LHY (Fowler et al,
1999) or TOC1 (Makino et al, 2002): this agrees with model
predictions (data not shown) and occurs because both LHY
and TOC1 repress Y transcription (Figure 4). The sequence of
the GI promoter includes several Evening Elements, the
putative binding sites for LHY (Harmer et al, 2000). gi loss-
of-function mutations result in low-amplitude circadian
rhythms, with low levels of LHY and CCA1 RNA and either
shorter or longer circadian periods (Fowler et al, 1999; Park
et al, 1999) or, in some conditions, in arrhythmia (A Hall,
personal communication). A simulated null mutation of Y
indeed results in still lower LHY transcription and therefore in
arrhythmia. If another gene in Arabidopsis can substitute for
a fraction of Y function, then null mutants will avoid
arrhythmia. Supplementary Figure 6 shows the oscillation of
LHY mRNA levels in a simulated partial loss-of-function y
mutant, where Y translation rate has been halved compared to
the WT rate. As observed in gi mutants, the oscillations have
reduced LHYexpression and a low amplitude both in LD cycles
and in LL (Mizoguchi et al, 2002).

Discussion

We use a joint, experimental and mathematical approach to
understand the plant circadian clock as an example of a
regulatory subnetwork that is not completely identified. We
start from the first proposed feedback loop of the circadian
clock mechanism in Arabidopsis, the LHY/CCA1–TOC1 net-
work (Alabadi et al, 2001). Comparing model predictions with
experimental results, we have progressively incorporated
additional components and interactions identified by mole-
cular genetics or inferred from physiological analysis. The
final, interlocking loop model accounts for a greater range of
data than the single-loop models, including the entrainable,
short-period oscillations in the cca1;lhy double mutant. In
developing this model, we included two putative genes X and
Y, and used experiments designed from the model predictions
to identify GI as a candidate gene for Y. Additional components
of the plant circadian clock mechanism almost certainly
remain to be identified, but we believe that this model is a

significant step forward in understanding of the timing
mechanism.

The prediction of new components is a particularly
beneficial outcome from formal modelling of a system that
has not been completely identified by experiment. Mathema-
tical models, in contrast to intuitive reasoning, can produce
quantitative predictions of dynamic processes that allow
detailed experimental design. This was important: the acute
light activation of Y in WT was predicted to be very transient
(peak 25 min after lights-on; Figure 6), allowing us to target
our tissue sampling to the appropriate interval, whereas
conventional sampling had obscured this induction of GI RNA
(Mizoguchi et al, 2002). The interlocked feedback model now
highlights the importance of GI as a component of light input to
the clock, a role that had not previously been emphasised and
should now be tested in greater detail. The activation of TOC1
by GI in an interlocked feedback loop is also a new proposal,
which is consistent with the timing of peak GI expression
before TOC1. Mutants that remove both the loops, such as the
lhy;cca1;gi triple mutant, should now be tested to determine
whether further oscillating subnetworks remain in their
absence. A recent study has suggested the existence of a
feedback loop between APRR9/APRR7 and LHY/CCA1 (Farre
et al, 2005). Including this loop would not affect our
conclusions on the residual network in the cca1;lhy double
mutant, which would lack this additional loop. As more data
become available, it will be possible to determine how the PRR
genes should be included into the network model. The
component(s) that activate CCA1 and LHY at the end of the
night remain to be identified: the model predicts the likely
accumulation pattern of such a component, X. The level of
detail in such predictions is obviously limited by the data upon
which the model is based, so including statistical measures of
uncertainty with the predictions will be increasingly important
(Brown and Sethna, 2003).

Each model makes further, qualitative predictions that
appear robust and readily testable. The constant activation
of TOC1 by light reproducibly caused arrhythmia of the LHY/
CCA1–TOC1–X model under long photoperiods or LL, for
example, which is not observed in WT plants. This highlights
the importance of rhythmic inhibition of the light input
(Roenneberg and Merrow, 2002), which is a wide spread
feature of clocks (Fleissner and Fleissner, 1992; Jewett et al,

Figure 6 GI is a candidate gene for Y. Simulated Y mRNA levels under LD12:12 and LL (dashed line). Data for GI mRNA levels (crosses), assayed by quantitative
RT–PCR relative to the ACT2 control, from samples harvested at the times indicated. Left panel, WT; right panel, cca1;lhy. Highest value of data and simulation is set
to 1, for each panel.
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1999). It is reminiscent of the ELF3-dependent zeitnehmer
function observed in Arabidopsis (McWatters et al, 2000;
Covington et al, 2001). In the interlocked loop model,
repression of Y by LHY and by TOC1 are sufficient to gate the
light activation of Y, so we had no justification for further
additions to this model. Clearly, such models should be
interpreted with caution, because undiscovered components
cannot be included explicitly. A model that accurately
recapitulates the regulation of known components is very
likely to have captured the relevant effects of the ‘hidden’
components. The model can advance understanding and make
useful predictions but might not capture the real number or
mechanism of the hidden components. For example, we model
the direct activator of LHYand CCA1 as the product of a TOC1-
activated gene, X, which could be a minor population of
modified TOC1 protein or TOC1-dependent protein complex.
We assume that Y mediates both the second light input and the
additional feedback loop for parsimony, which is now
supported by data on GI, although these functions could in
principle be split among several components.

The importance of the light input pathways in our models
was to be expected, because the plant circadian system is
known to interact with multiple photoreceptor pathways in a
complex fashion (reviewed in Fankhauser and Staiger, 2002;
Millar, 2003). The tracking of multiple phases during entrain-
ment is thought to require at least two light inputs to two
feedback loops (Rand et al, 2004), for example, which are
present in our final model. The entrainment patterns of the
Arabidopsis clock under different photoperiods (Millar and
Kay, 1996) indicate that the phase of the clock does not simply
track dawn. Therefore, the clock must receive light input(s)
at times other than the dark–light transition. In our model,
LHY allows light input at dawn, while input to Y and ZTL is
potentially effective throughout the day. The known input
photoreceptors could in future be explicitly included, provid-
ing quantitative estimates of their function for comparison to
data from plant photobiology. Similarly, the models will help
to reveal how the circadian output pathways allow the few
genes of the clock to control over a thousand rhythmically
regulated genes in the Arabidopsis genome (Harmer et al,
2000). However, the complexity of such biological networks is
likely to limit the quantitative accuracy of early models, so the
potential value of simplified experimental model systems that
facilitate the link to mathematical analysis is clear. These will
include synthetic gene networks in microbial hosts but also
‘reduced’ systems: we have recently characterised circadian
rhythms in seedlings without light exposure, in which both the
complexity of the circadian system and the number of clock-
controlled target genes are greatly reduced (A Hall et al,
unpublished results).

Materials and methods

Plant materials and growth conditions

Wassilewskija (Ws) WT and cca1-11;lhy-21 (termed cca1;lhy) double
mutants in the Ws background (Hall et al, 2003) were used in all
experiments. Luciferase reporter gene fusions containing the promoter
region of CCA1 (CCA1:LUCþ ), CHOLOROPHYLL A/B-BINDING
PROTEIN2 (LHCB1.1)(CAB2:LUCþ ) and COLD AND CIRCADIAN
REGULATED 2 (CCR2:LUCþ ) were introduced into Ws and mutant

plants by Agrobacterium-mediated transformation, essentially as
described (Hall et al, 2003). For each genotype and reporter, three
independent transgenic lines were tested in each experiment; all gave
very similar results. Light sources were as described (Hall et al, 2003).
Seedlings for luminescence analysis were grown under 12 h light:12 h
dark cycles (LD12:12), as described (Hall et al, 2003). Seedlings
for RNA analysis were grown under LD12:12 comprising
13–20mmol m�2 s�1 red light for 6 days, followed by constant
13–20mmol m�2 s�1 red light for 3 days. Samples of B150ml packed
volume of seedlings were harvested into RNAlater buffer (Ambion,
Huntingdon, UK) to stabilise RNAs, starting in the last cycle of
entrainment.

Luminescence and rhythm analysis

Luminescence of individual seedlings was measured with an
automated luminometer (Doyle et al, 2002). Rhythmic data were
analysed using the fast Fourier transform nonlinear least squares
procedure (Plautz et al, 1997) through the Biological Rhythms
Analysis Software System, available online (Brown, 2004a). Var-
iance-weighted mean periods and standard errors are presented. To
create PTCs, seedlings expressing the CCR2:LUCþ reporter were
grown and entrained as above, and then transferred to DD at the
predicted time of lights-off. Luminescence signals were monitored for
5 days in DD. After 24 h in DD, separate populations of seedlings were
treated with 15 mmol m�2 s�1 red light for 1 h and returned to DD at 3 h
intervals. The free running period and phase of the control (nontreated
WT and mutant) plants was used to calculate the circadian time of
the light treatments (‘old phase’). The time of the next peak of
CCR2:LUCþ expression was determined in the treated plants and
circadian time of the ‘new phase’ set at the light pulse was estimated
using the cognate period value.

RNA analysis

Seedlings were homogenised in RLT buffer (Qiagen, Crawley, UK)
using a MixerMill MM300 at a frequency of 30 s�1 for 3 min with a
5 mm stainless steel cone ball (Retsch, Leeds, UK). Total RNA was
isolated using a Plant RNeasy kit and RNase-free DNase (Qiagen,
Crawley, UK) according to the manufacturer’s instructions. A 1mg
portion of total RNA was reverse-transcribed using the RevertAid
cDNA kit (Fermentas, Helena Biosciences, Sunderland, UK) with
random hexamer primers, according to the manufacturer’s instruc-
tions. GI sequence abundance in each cDNA sample was assayed by
quantitative PCR in an ABI PRISM 7700 using ABI SYBRgreen PCR Mix
(Applied Biosystems, Warrington, UK) in a final volume of 15ml. GI
sequence abundance was normalised relative to ACTIN2 (ACT2), using
a cDNA dilution series for each primer set in each experiment. The
following primers were used:

GI forward primer AATTCAGCACGCGCCTATTG,
GI reverse primer GTTGCTTCTGCTGCAGGAACTT;
ACT2 forward primer CAGTGTCTGGATCGGAGGAT,
ACT2 reverse primer TGAACAATCGATGGACCTGA, each at 300 nM.

Each RNA sample was assayed in triplicate. Data shown are a
representative trace from two independent biological replicates that
gave very similar results.

Computational methods

As there is too little data to discriminate LHY from CCA1 regulation and
function, we combine them in the single model component ‘LHY/
CCA1’ in order to simplify our models (see Supplementary text); for
brevity, we refer to this joint component as LHY, as in our previous
work. Our method of parameter estimation uses a cost function, which
is based on reproducible, qualitative features of experimental data, to
score the performance of a model with a test parameter set. The cost
function is minimised by the optimisation procedure described (Locke
et al, 2005). A low cost (indicating a good fit) is obtained for parameter
sets that allow the model of WT plants to be entrained in LD12:12
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cycles, with LHY RNA levels that peak at dawn, TOC1 RNA levels that
peak at dusk and oscillations with a period greater than 24 h in DD. As
there is only limited, noisy experimental data for the mRNA oscillation
of TOC1 and LHY in DD, it is difficult to verify that the TOC1 and LHY
mRNA levels converge to a stable limit cycle. The cost function only
requires that LHYand TOC1 mRNA levels oscillate with slow damping
in DD, giving a reasonable score if the size of oscillation has dropped
by 25% over 300 h (Strayer et al, 2000; Kim et al, 2003). Developing the
model based on LD and DD data allowed subsequent testing of the
model by comparison to the larger amount of experimental data
available from LL conditions.

The interlocked feedback loop network proposed here was scored
both as a model of WTand of the cca1;lhy mutant. The double mutant
was simulated by reducing the translation rate of LHY to 1/1000th of its
WT value. This simulated mutation led to arrhythmia in all the single-
loop models (data not shown). Additional terms were introduced to
the cost function to score models of the double mutant, specifying
entrainment under LD12:12 with peak TOC1 expression 5 h after dawn
and oscillations with a period of 18 h or less in DD. To enable TOC1
activation sufficiently early in the day in the double mutant, we
required that Y transcription peaked sharply at dawn in the double
mutant.

The 20 parameter sets with the lowest costs (which allowed the
model to best fit the specified criteria) all simulated similar gene
expression profiles in WTand cca1;lhy backgrounds (data not shown).
An optimal parameter set was chosen from these 20 by comparing the
simulated rhythms to experimental data that were not included in the
cost function (see Results).

The equations were solved using MATLAB (Mathworks, Cambridge,
UK). Parameter optimisation was carried out (Locke et al, 2005) by
compiling MATLAB code into C and running the code on a task farm
computer consisting of 62� 2.6 GHz Xeon CPUs. We have developed a
user-friendly interface, Circadian Modelling, to allow simulations
using this and other circadian models, without MATLAB. This software
and files for our final model are available online (Brown, 2004b).

Supplementary information

Supplementary information are available at the Molecular Systems
Biology website (www.nature.com/msb).
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Sup Figure 1: Network diagram for the single-loop LHY/CCA1-TOC1 network.  

TOC1 protein in the nucleus and light mediated by protein P (not shown) activate 

transcription of mRNA of LHY, which represents both LHY and CCA1. When LHY 

protein reaches the nucleus it represses TOC1 mRNA transcription. Symbol 

convention as in Figure 1. 

Sup Figure 2: Simulations of the LHY/CCA1-TOC1-X network. Left panel: simulated 

TOC1 protein levels (dashed line), data from (Mas et al. 2003) (solid line). Maxima 

have been normalised to 1 for each trace. Right panel: Prediction of X mRNA (dotted 

line) and X protein levels (black line). In this and other supplementary figures, filled 

box above panel, dark interval; open or no box, light interval. 

Sup Figure 3: Stability analysis of optimal parameter set in the interlocked feedback 

loop model. The period and amplitude of TOC1 mRNA oscillations over 300h in LL 

are calculated for a 5% increase and decrease to each parameter value in turn. The 

circle represents the period and amplitude of the optimal parameter values. 

Sup Figure 4: Simulations of the interlocked feedback loop network in LD12:12 and 

LL. Left panel: mRNA levels for WT in LD12:12 then LL.  LHY mRNA level peaks 

at dawn (dotted line) and TOC1 mRNA level (solid line) at dusk in LD cycles. Period 

is 25h in LL. Right panel: mRNA levels for cca1;lhy double mutant in LD12:12 then 

LL. TOC1 mRNA peaks in the middle of the day and oscillates with an 18h period in 

LL, as seen experimentally in Fig 2.  

Sup Figure 5: Effects of altered photoperiod on circadian rhythms. Simulations using 

the interlocked feedback network (dashed line), compared to data (solid line), under 

LD16:8 (upper panels) and LD8:16 (lower panels). CCR2 mRNA data from (Roden et 

al. 2002) is used as a late evening marker to compare to simulations of TOC1 mRNA 

(left-hand panels). LHY mRNA levels are from (Yanovsky & Kay 2002), highest 

value of data and simulation is set to 1 (right-hand panels). 



Sup Figure 6: Effects of partial y loss-of-function in the interlocked feedback network. 

Simulation of LHY mRNA in WT (dashed line) and simulated gi mutant (solid line), 

simulated by halving the Y mRNA translation rate compared to WT.  

Sup Table 1: Optimal parameter values for LHY/CCA1-TOC1-X network 

Sup. Table 2: Comparison of models: period estimates of the 3 models developed for 

the Arabidopsis circadian clock network are compared to experimental data. The 

simulation estimates are the average period over 300h in DD, for WT, cca1 single 

mutant, and cca1;lhy double mutant. Experimental data for WT and cca1 mutant 

periods from (Alabadi et al. 2002), cca1;lhy data from Fig 2. 

Sup Table 3: Optimal parameter values for interlocked feedback loop network 
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Parameter values for LHY/CCA1-TOC1-X Network

nMMichaelis constant of protein X mRNA degradation1.9433k7

nM/hMaximum rate of degradation of protein X mRNA5.4578m9

nMConstant of activation by TOC11.9160g3

Hill coefficient of activation by TOC12c

nM/hMaximum transcription rate of X mRNA2.6891n4

nMMichaelis constant of nuclear TOC1 degradation2.6877k6

nM/hMaximum rate of light independent nuclear TOC1 degradation0.9016m8

nM/hMaximum rate of light dependent nuclear TOC1 degradation0.5879m7

nMMichaelis constant of cytoplasmic TOC1 degradation1.8972k5

nM/hMaximum rate of light independent cytoplasmic TOC1 degradation2.5529m6

nM/hMaximum rate of light dependent cytoplasmic TOC1 degradation1.5743m5

1/hRate constant of TOC1 movement out of nucleus4.1674r4

1/hRate constant of TOC1 movement into nucleus0.6876r3

1/hRate constant of TOC1  mRNA  translation2.1535p2

nMMichaelis constant of TOC1 mRNA degradation2.2424k4

nM/hMaximum rate of TOC1 mRNA degradation7.1075m4

nMConstant of repression by protein LHY1.3859g2

Hill coefficient of repression by protein LHY2b

1/hMaximum of light dependent activation of TOC1 transcription1.2238n3

nM/hMaximum light-independent TOC1 transcription rate3.4691n2

nMMichaelis constant of nuclear LHY degradation8.4915k3

nM/hMaximum rate of nuclear LHY degradation3.7925m3

nMMichaelis constant of cytoplasmic LHY degradation0.2511k2

nM/hMaximum rate of cytoplasmic LHY degradation2.1267m2

1/hRate constant of LHY transport out of nucleus1.0993r2

1/hRate constant of LHY transport into nucleus10.6578r1

1/hRate constant of LHY mRNA translation4.0188p1

nMMichaelis constant of LHY mRNA degradation3.9155k1

nM/hMaximum rate of LHY mRNA degradation8.0496m1

nMConstant of activation by protein X2.0947g1

Hill coefficient of activation by X2a

nM/hMaximum light-independent LHY transcription rate9.4424n1

1/hCoupling constant of light activation of LHY transcription12.2286q1

DimensionsParameter Description

Parameter 

Value

Parameter 

Name

Locke et al, Sup Table  1



1/hRate constant of  X mRNA translation2.4201p3

1/hRate constant of protein X movement into nucleus2.0076r5

1/hRate constant of protein X movement out of nucleus20.0848r6

DimensionsParameter Description

Parameter 

Value

Parameter 

Name

nMMichaelis constant of protein P degradation1.2000k10

nM/hMiaximum rate  of protein P degradation1.2000m12

1/hCoupling constant of light activation of protein P degradation1.0000q2

nM/hLight dependent production of  protein P0.5p4

nMMichaelis constant of nuclear protein X degradation18.1832k9

nM/hMaximum rate of degradation of nuclear protein X2.1795m11

nMMichaelis constant of cytoplasmic protein X degradation5.2738k8

nM/hMaximum rate of degradation of cytoplasmic protein X2.1119m10

Locke et al, Sup Table  1 
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Arrythmic29.225.0LHY/CCA1-TOC1 single loop model

Arrythmic29.525.9LHY/CCA1-TOC1-X single loop model

17.025.525.9Interlocked Feedback Model

18.5  (±0.3)25.4 (±0.2)26.6 (±0.2)Experimental data (±1 S.E.M)

cca1/lhy mutant (h)cca1 Single mutant (h)WT period (h)

Locke et al, Sup Table  2



Parameter values for interlocked feedback loop network

Hill coefficient of activation by TOC11.4422d

nM/hMaximum transcription rate of protein X0.2431n3

nMMichaelis constant of nuclear TOC1 degradation0.4033k6

nM/hMaximum rate of light independent nuclear TOC1 degradation4.0424m8

nM/hMaximum rate of light dependent nuclear TOC1 degradation0.0492m7

nMMichaelis constant of cytoplasmic TOC1 degradation2.7454k5

nM/hMaximum rate of light independent cytoplasmic TOC1 degradation3.1741m6

nM/hMaximum rate of light dependent cytoplasmic TOC1 degradation0.0013m5

1/hRate constant of TOC1 movement out of nucleus2.1509r4

1/hRate constant of TOC1 movement into nucleus0.3166r3

1/hRate constant of TOC1 mRNA translation4.3240p2

nMMichaelis constant of TOC mRNA degradation2.5734k4

nM/hMaximum rate of TOC mRNA degradation3.8231m4

Hill coefficient of repression by LHY1.0258c

nMConstant of repression by LHY0.2658g3

nMConstant of activation by protein Y0.0368g2

Hill coefficient of activation by protein Y1.0258b

nM/hMaximumTOC1  transcription rate3.0087n2

nMMichaelis constant of nuclear LHY degradation1.2765k3

nM/hMaximum rate of nuclear LHY degradation3.6888m3

nMMichaelis constant of cytoplasmic LHY degradation1.5644k2

nM/hMaximum rate of cytoplasmic LHY degradation20.4400m2

1/hRate constant of LHY transport out of nucleus0.1687r2

1/hRate constant of LHY transport into nucleus16.8363r1

1/hRate constant of LHY  mRNA translation0.8295p1

nMMichaelis constant of LHY mRNA degradation1.8170k1

nM/hMaximum rate of LHY mRNA degradation1.5283m1

nMConstant of activation by protein X0.8767g1

Hill coefficient of activation by protein X3.3064a

nM/hMaximum light-independent LHY transcription rate5.1694n1

1/hCoupling constant of light activation of LHY transcription2.4514q1

DimensionsParameter DescriptionParameter Value

Parameter 

Name

Locke et al, Sup Table  3



DimensionsParameter DescriptionParameter Value

Parameter

Name

Hill coefficient of repression by LHY1.0237f

nM/hMiaximum rate  of protein P degradation1.2000m15

1/hCoupling constant of light activation of protein P degradation1.0000q3

nMMichaelis constant of protein P degradation1.2000k13

nM/hLight dependent production of  protein P0.5000p5

nMMichaelis constant of nuclear protein Y degradation1.8066k12

nM/hMaximum rate of degradation of nuclear protein Y0.6114m14

nMMichaelis constant of cytoplasmic protein Y degradation1.8258k11

nM/hMaximum rate of degradation of cytoplasmic protein Y0.1347m13

1/hRate constant of protein Y movement out of nucleus0.2002r8

1/hRate constant of protein Y movement into nucleus2.2123r7

1/hRate constant of Y mRNA translation0.2485p4

nMMichaelis constant of protein Y mRNA degradation1.7303k10

nM/hMaximum rate of degradation of protein Y mRNA4.2970m12

Hill coefficient of repression by TOC13.6064e

nMConstant of repression by LHY0.0645g6

nMConstant of repression by TOC11.1780g5

nM/hLight independent component of Y transcription0.1649n5

nM/hLight dependent component of  Y transcription0.0857n4

1/hCoupling constant of light activation of Y mRNA transcription2.4017q2

nMMichaelis constant of nuclear protein X degradation17.1111k9

nM/hMaximum rate of degradation of nuclear protein X3.3442m11

nMMichaelis constant of cytoplasmic protein X degradation0.6632k8

nM/hMaximum rate of degradation of cytoplasmic protein X0.2179m10

1/hRate constant of protein X movement out of nucleus3.3017r6

1/hRate constant of protein X movement into nucleus1.0352r5

1/hRate constant of X mRNA translation2.1470p3

nMMichaelis constant of protein X mRNA degradation6.5585k7

nM/hMaximum rate of degradation of protein X mRNA10.1132m9

nMConstant of activation by TOC10.5388g4

Locke et al, Sup Table  3 
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1 Supplementary Text

1.1 Model One: LHY/CCA1-TOC1-X Network

The first network modelled (Fig 1) includes two extra components compared

to the LHY/CCA1-TOC1 network modelled in (Locke et al., 2005); An extra

gene, called X, was added to the pathway, and a constant light activation

term was added to TOC1 . As in previous clock models (Locke et al., 2005;

Leloup et al., 1999; Leloup and Goldbeter, 2003; Ueda et al., 2001; Kuro-

sawa and Iwasa, 2002; Kurosawa et al., 2002) Michealis-Menten kinetics were

used to describe enzyme mediated degradation of proteins, and Hill functions

were used to describe the transcriptional activation term of the mRNA for

LHY and TOC1 . We use the cytosolic and nuclear pools of our model pro-

teins to represent all the processes between the accumulation of an mRNA

and the regulation of the next gene in the network by an active form of the

cognate protein. There is some evidence that Michaelis-Menten kinetics may

not be an accurate approximation of processes in higher organisms, and other

clock models (Forger and Peskin, 2003) include additional processes, such as

mRNA export from the nucleus, but there is currently no data to specify

their dynamics in plants. The converse approach is to combine all intermedi-

ate steps as a time delay between the synthesis of RNA and active protein.

This aids intuitive understanding by reducing the number of model compo-

nents, so simplified versions of our models will be described elsewhere (JCL,

MST and AJM, unpublished results). Given that the time delays can hamper

subsequent mathematical analysis, we present the more detailed models here.

As LHY and CCA1 are indistinguishable for our purposes, we retain only

one gene, LHY , in our model. Quantitative differences in LHY and CCA1

regulation have sometimes been reported (Mizoguchi et al., 2002), though

their qualitative behaviour is very similar. Differences in the response to LHY

1



and CCA1 overexpression might occur but current data (Fowler et al., 1999)

include potentially confounding effects of overexpression level, genetic back-

ground, and developmental stage. Combining LHY and CCA1 genes removes

16 parameters and 3 equations from the model, which can be included when

they are informed by further data.

We took the following as our mathematical model for the central circadian

network: a LHY-TOC1-X feedback loop which involves the cellular concentra-

tions c
(j)
i (t) of the products of the ith gene (i = L labels LHY, i = T labels

TOC1, i = X labels X) where j = m, c, n denotes that it is the corresponding

mRNA, or protein in the cytoplasm or nucleus respectively.

dc
(m)
L

dt
= q1c

(n)
P Θ (t) +

n1c
(n)
X

a

g1
a + c

(n)
X

a −
m1c

(m)
L

k1 + c
(m)
L

(1)

dc
(c)
L

dt
= p1c

(m)
L − r1c

(c)
L + r2c

(n)
L −

m2c
(c)
L

k2 + c
(c)
L

(2)

dc
(n)
L

dt
= r1c

(c)
L − r2c

(n)
L −

m3c
(n)
L

k3 + c
(n)
L

(3)

dc
(m)
T

dt
=

(n2 + Θ (t) n3) g2
b

g2
b + c

(n)
L

b
−

m4c
(m)
T

k4 + c
(m)
T

(4)

dc
(c)
T

dt
= p2c

(m)
T − r3c

(c)
T + r4c

(n)
T − ((1 − Θ (t))m5 + m6)

c
(c)
T

k5 + c
(c)
T

(5)

dc
(n)
T

dt
= r3c

(c)
T − r4c

(n)
T − ((1 − Θ (t))m7 + m8)

c
(n)
T

k6 + c
(n)
T

(6)

dc
(m)
X

dt
=

n4c
(n)
T

g3
c + c

(n)
T

c −
m9c

(m)
X

k7 + c
(m)
X

(7)

dc
(c)
X

dt
= p3c

(m)
X − r5c

(c)
X + r6c

(n)
X −

m10c
(c)
X

k8 + c
(c)
X

(8)

dc
(n)
X

dt
= r5c

(c)
X − r6c

(n)
X −

m11c
(n)
X

k9 + c
(n)
X
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dc
(n)
P

dt
=(1 − Θ)p4 −

m12c
(n)
P

k10 + c
(n)
P

− q2Θc
(n)
P (10)
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Here the various rate constants nj, gj etc parameterise transcription (nj , gj),

degradation (mj , kj), translation (pj), and the nuclear ↔ cytoplasmic protein

transport (rj). There is evidence that LHY and CCA1 proteins bind as a

dimer to the promoter of TOC1 (Daniel et al., 2004), and that there is only

one active binding site on the TOC1 promoter (Alabadi et al., 2001), so the

Hill coefficient for TOC1 inhibition by LHY protein, b, was set to 2. As there

is no experimental evidence to support different values for the Hill coefficients

a and c these were also set to 2. The acute light effect appears through the

term q1c
(n)
P Θ(t). Light is known to give an acute, transient activation response

for expression of LHY and CCA1 (Kim et al., 2003; Kaczorowski and Quail,

2003; Doyle et al., 2003). This was modelled as in (Locke et al., 2005), using a

simple mechanism involving an interaction of a light sensitive protein P, with

concentration c
(n)
P with the LHY gene promoter. Θ = 1 when light is present,

0 otherwise. The values of the four parameters that appear in the equation

for c
(n)
P are chosen so as to give an acute light activation profile which is close

to that observed in experiment. The essential features of Eq 10 are that P

is produced only when light is absent and is degraded strongly when light is

present.

A constant light activation term was added to X mRNA production, Θ (t) n3,

and the effect of ZTL is modelled by the degradation terms for TOC1 in the

cytoplasm and the nucleus, which are dark activated as suggested in (Mas

et al., 2003).

1.2 Model Two: The interlocked feedback loop model

For the interlocked feedback loop model an extra loop is added to the network

structure of the LHY/CCA1-TOC1-X circuit. Here a hypothetical gene Y

activates TOC1 , and TOC1 then feeds back to repress Y . The light input into

this loop is moved from TOC1 to Y as there is no evidence of light activation of
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TOC1 (Makino et al., 2002). Y was allowed to be both acutely light activated,

in the manner of LHY , so to explain the extremely light sensitive response

seen experimentally in the PTC of the cca1;lhy mutant (Figure 2), and to have

a constant light activation term, to allow the clock to sense photoperiod.

We used a non-cooperative binding term for the activation and repression of

TOC1 by Y and LHY respectively, and for the repression of Y by TOC1 and

LHY. This means that LHY represses TOC1 transcription irrespective of the

levels of Y.

The Hill coefficients in the equations were allowed to vary between 1 and 4

in the optimisation procedure. In order to obtain a compromise between flex-

ibility and overall number of free parameters the Hill coefficients of activation

and repression of TOC1 were set to the same value, i.e. b = c.

dc
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dt
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⎠
⎛
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dt
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dc
(n)
X

dt
= r5c

(c)
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(n)
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(n)
X
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e
5
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T
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6
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Y
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Y
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dc
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Y

dt
= p4c

(m)
Y − r7c

(c)
Y + r8c

(n)
Y −

m13c
(c)
Y

k11 + c
(c)
Y

(21)

dc
(n)
Y

dt
= r7c

(c)
Y − r8c

(n)
Y −
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Y
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(n)
Y

(22)

dc
(n)
P

dt
=(1 − Θ (t)) p5 −

m15c
(n)
P

k13 + c
(n)
P

− q3Θ (t) c
(n)
P (23)

1.3 Optimisation process

We follow the optimisation technique as described (Locke et al., 2005). We

summarise the technique here, but for a full description please refer to (Locke

et al., 2005). There is significant noise in the experimental data for the mRNA

levels of the key genes in the clock of Arabidopsis, and very little data for

protein abundance, making a direct fit to the data difficult. This motivated

us to construct an empirical cost function designed to give a value for the

goodness of fit of our solution to qualitative features that are consistent in the

data.

We constructed our cost function ∆ as a sum of terms that each quantify the

agreement between our model and a qualitative experimental feature. Small

values of the cost function correspond to a model (or set of parameter values)

that give a good qualitative agreement with the corresponding experimental

features. The weighting of each term in the cost function was chosen so that

an acceptable error within the range of expermental variability would add on

the order of 1 unit to the cost function. In order to evaluate the terms in the

cost function we solved the equations numerically over 600 hours, 300 hours

in 12 hour light 12 hour dark cycles (LD), followed by 300 hours in darkness
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(DD) (the first 200 hours of the LD cycles of each solution are discarded

as transitory). In order to find a set of optimal solutions for each network

studied, the cost function was calculated for a cross section of parameter space

chosen using a Sobol quasi-random number generator (Press et al., 1996). The

best fifty solutions were then put through a further optimisation step using a

simulated annealing routine (Brooks and Morgan, 1995).

For the LHY/CCA1-TOC1-X network the cost function is essentially the same

as that used in (Locke et al., 2005). We reproduce here the description of the

cost function from Appendix A of that paper. The cost function is given by:

∆ = δτld
+ δτd

+ δφ + δcL
+ δsize. (24)

Firstly,

δτld
=

∑
i=L,T

〈(24 − τ
(m)
i )2/0.15〉ld (25)

Is the summed error in the period, τ , for LHY (L) and TOC1 (T) mRNA

levels in light:dark cycles (LD), where 〈〉ld gives the average over the cycles

between 200 < t < 300, and a “marginally acceptable” period difference of

≈ 25mins contributes O(1) to the cost function.

Secondly,

δτd
=

∑
i=L,T

〈(25 − τ
(m)
i )2/f〉d (26)

where the average of 〈〉d is now over 300 < t < 600 (DD). The biological

evidence strongly indicates that the free running period of the clock is greater

than 24 (Millar et al., 1995), probably about 25, but we have less confidence

in assigning a precise value hence we adopt values of f = 0.05 if τ
(m)
i ≤ 25

and f = 2 if τ
(m)
i > 25.
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Thirdly,

δφ =
∑

i=L,T

⎡
⎢⎣〈∆Φ2

i 〉ld +

⎛
⎝ σ[c

(m)
i (t

p
)]ld

0.05〈c
(m)
i (t

p
)〉ld

⎞
⎠

2

+

(
σ[∆Φi]

5/60

)2
⎤
⎥⎦+ δent (27)

The first term compares the mean difference in phase over the LD cycles,

where ∆Φi = φ̄i − φi, φi is the phase (from dawn) of the RNA peak in the

model and φ̄L = 1h, φ̄T = 11h are the target phases of the peaks in c
(m)
L and

c
(m)
T respectively. We assume a cost that is O(1) for solutions that differ by an

hour. The next two terms ascribe a cost of O(1) for limit cycle solutions in LD

cycles whose peak heights are within 5 percent, and whose variation in peak

times is 5 minutes. σ[]ld is the standard deviation for the cycles in LD. The

term δent checks that the solution is truly entrained to the light/dark cycle, i.e

is not oscillating with the correct phase simply because of the initial conditions

chosen, as follows: The solution is rerun for 75 hours, taking the solution at

202 hours and shifting it back 3 hours, i.e initialising the t = 202 solution as

the t = 199 solution. The new phase of the second peak is compared to the

original phase of the second peak. If the phase difference is still near 3 hours,

then the solution is too weakly entrained, and the solution is pathological.

The LD cycles have failed to phase shift the response. Hence δent takes the

form of log(0.5)/log(δφ/3), where δφ is the phase difference in hours between

the shifted and original solution, and δφ/3 is therefore the fraction of the

imposed 3 hour phase shift remaining after 2 periods. The term log(0.5) gives

the acceptable remaining phase difference of 1.5 hours for the second cycle,

which results in an O(1) contribution to the cost function.

Next,

δsize =
∑

i=L,T

(
1

〈∆c
(m)
i 〉ld

)2

+
(

τo

τe

)2

(28)

The first term costs for solutions in LD cycle with oscillation sizes, (∆c
(m)
i =
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c
(m)
i max − c

(m)
i min), less than 1nm, and the second term checks that the os-

cillations do not decay too quickly when entering DD as follows:τo is a decay

constant over the 300 hours in DD, τo = −300/log((∆c
(m)
T ld−∆c

(m)
T d)/∆c

(m)
T ld),

and τe gives the acceptable decay constant, that TOC1 oscillations size has

dropped by 1/4 over 300 hours, −300/log(0.75).

Finally,

δcL
=

∑
i=2,−2

〈

⎛
⎝ 2/3c

(m)
L (t

p
)

c
(m)
L (t

p
) − c

(m)
L (t

p
+ i)

⎞
⎠

2

〉ld + ... (29)

〈

⎛
⎝0.05(c

(m)
L (t

p
− 2) − c

(m)
L (t

m
))

c
(m)
L (t

m
) − c

(m)
L (t

m
+ i)

⎞
⎠

2

〉ld + 10

⎛
⎝〈c

(m)
L (tpd)〉ld

〈c
(m)
L (tpl)〉ld

⎞
⎠

4

The first term checks that the LHY mRNA expression profile has a sharp

peak in LD cycles, with an O(1) contribution if LHY ’s expression level has

dropped by 2/3 of its oscillation size within 2 hours before and after its peak of

expression. The second term checks that LHY mRNA expression has a broad

minimum, with an O(1) contribution if 2 hours before and after the minimum

point LHY ’s expression has only increased to 5 percent of the level 2 hours

before LHY ’s peak. The last term checks that the peak of LHY mRNA ex-

pression drops from LD into DD, as it loses its light activation. An additional

cost term was added to shape fit the TOC1 mRNA profile, as suggested in

(Locke et al., 2005) in order to stop spurious solutions where TOC1 mRNA

expression is saturated, but this term was found to be unneccesary for opti-

mising a network where TOC1 is light activated, and was not used for further

optimisations.

Throughout the implementation the cost function was “capped” at ∆max =

104, such that ∆ → Min(104, ∆).

As discussed in the computational methods, we added new terms to the cost

function in order to optimise the interlocked feedback loop model to both WT

8



and cca1;lhy mutant data. The equations were re-solved with the translation

rate of LHY reduced to a thousandth of its WT value in order to simulate

the double mutant. The cost function now becomes

∆ = δτld
+ δτd

+ δφ + δcL
+ δsize + δφd + δdm

τld
+ δdm

τd
+ δdm

φ + δdm
cY

+ δdm
size

(30)

where the label (dm) denotes the cost function for the cca1;lhy double mutant.

One new WT cost function term δφd added represents a minor change to

constrain an appropriate phase difference between the peak levels of LHY and

TOC1 mRNA, ∆Φd = φT −φL (modulo half the period), with a characteristic

prefactor of 10h. This term makes no discernable difference to the cost function

when applied to the optimised one loop models. See term below:

δφd = (10/∆Φd)
2 (31)

δsize was also altered slightly in order to ensure both LHY mRNA and TOC1

mRNA oscillations do not decay too quickly when entering DD. This is nec-

essary as in the interlocked feedback loop model TOC1 mRNA levels can

oscillate through TOC1 ’s feedback loop with Y whilst LHY mRNA levels are

arrhythmic. δsize becomes

δsize =
∑

i=L,T

⎡
⎣( 1

〈∆c
(m)
i 〉ld

)2

+
(

τo

τe

)2
⎤
⎦ . (32)

The first term remains the same, and the second term is now summed over

LHY (L) and TOC1 (T). All the other WT cost function terms remain the

same as for the one loop model optimisation.

Using the same methodology as for the WT terms, we define below the new

9



double mutant terms of the cost function. The first new term,

δdm
τld

=
∑

i=Y,T

〈(24 − τ
(m)
i )2/0.15〉ld (33)

is the summed error in the period, τ , for Y (Y) and TOC1 (T) mRNA levels

in LD cycles.

We penalise solutions with a period of TOC1 greater than 18 hours in the

dark. δ(m)
τld

= 0 if the period is less than 18 hours, otherwise:

δdm
τd

= 〈(18 − τ
(m)
T )2/0.1〉d (34)

Next,

δdm
φ =

∑
i=Y,T

[
〈∆Φ2

i 〉ld + (σ[∆Φi])
2
]

(35)

The first term compares the mean difference in phase over the LD cycles,

where ∆Φi = φ̄i − φi, φi is the phase (from dawn) of the RNA peak in the

model and φ̄Y = 1h, φ̄T = 5h are the target phases of the peaks in c
(m)
Y and

c
(m)
T respectively. The second term describes a cost of O(1) for solutions whose

variations in peak phases are 1h. Next,

δdm
size =

∑
i=Y,T

(
1

〈∆c
(m)
i 〉ld

)2

(36)

This term costs for solutions in LD cycle with oscillation sizes, (∆c
(m)
i =

c
(m)
i max − c

(m)
i min), less than 1nm. Finally,

δdm
cY

=
∑

i=2,−2

〈

⎛
⎝ 2/3c

(m)
Y (t

p
)

c
(m)
Y (t

p
) − c

(m)
Y (t

p
+ i)

⎞
⎠

2

〉ld (37)

The first term checks that the Y mRNA expression profile has a sharp peak
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in LD cycles, with an O(1) contribution if Y ’s expression level has dropped by

2/3 of its oscillation size within 2 hours before and after its peak of expression.

As for the single loop optimisations, throughout the implementation the cost

function was “capped” at ∆max = 104, such that ∆ → Min(104, ∆). The sum

of the double mutant cost function terms was also capped at 103.
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