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Abstract

Circadian clocks in all organisms include feedback loops that generate rhythmic expression of key genes. We model the first such

loop proposed for the clock of Arabidopsis thaliana, the experimental model species for circadian timing in higher plants. As for

many biological systems, there are no experimental values for the parameters in our model, and the data available for parameter

fitting is noisy and varied. To tackle this we constructed a cost function, which quantifies the agreement between our model and

various key experimental features. We then undertook an efficient global search of parameter space, to test whether the proposed

circuit can fit the experimental data. Using this approach we show that circadian clock models can function well with low

cooperativity in transcriptional regulation, whereas high cooperativity has been a feature of previous (hand-fitted) clock models in

other species. Our optimized solution for the Arabidopsis clock model fits several, but not all, of the key experimental features. We

test the predicted effects of well-characterized mutations in the clock circuit and show the phases of the circadian cycle where

additional components that are yet to be identified experimentally must be present to complete the circadian feedback loop.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A circadian network or ‘‘biological clock’’ appears to
confer a competitive advantage to an organism,
probably by enabling it to anticipate daily light/dark
(or warm/cold) cycles in the environment. Circadian
rhythms with very similar properties are found in almost
all eukaryotic organisms and in some prokaryotes,
controlling processes from cyanobacterial cell division
to human sleep–wake cycles (Dunlap et al., 2003). There
is now evidence (Dunlap, 1999) that these rhythms can
e front matter r 2005 Elsevier Ltd. All rights reserved.
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be generated by a central ‘‘loop’’ or loops of genes (and
gene products), that communicate by positive and
negative feedback. Input signals from light and/or
temperature alter the level of one or more components
of the loops, in order to reset the phase of the rhythm.
Such loops have been proposed and modelled for a
variety of organisms, including the fungus Neurospora

crassa (Leloup et al., 1999, Ruoff et al., 1999a, b, 2001),
the fruit fly Drosophila melanogaster (Ueda et al., 2001;
Tyson et al., 1999), and the mouse (Leloup and
Goldbeter, 2003; Forger and Peskin, 2003). Oligonu-
cleotide array experiments in the model plant Arabi-

dopsis thaliana (Harmer et al., 2000) suggest that RNA
transcripts from at least 6 percent of the genome, or over
a thousand genes, are expressed rhythmically, under the
control of output pathways leading from the circadian
clock. Although, there is evidence that there are

www.elsevier.com/locate/yjtbi
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Fig. 1. Model for the central feedback loop in the Arabidopsis clock.
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independent circadian rhythms in plants and other
organisms not under the central clock control, such as
the light promoted circadian oscillations in nitrate
reductase (NR) activity (Ramlaho et al., 1995; Chris-
tensen et al., 2004), it appears that the molecular
rhythms generated from the central oscillator control a
variety of the observed, macroscopic rhythms including
leaf movement, flowering time, and photosynthesis.

One of the fundamental problems facing biological
scientists in the post-genomic era is how to obtain, and
test, models for the genetic networks that represent the
regulatory ‘‘wiring diagram’’ of a living cell. These
networks can easily involve thousands of genes and gene
products (RNAs and proteins). Circadian clocks can be
thought of as genetic subnetworks that are responsible
for generating the circadian rhythm (Goldbeter, 2002).
Their complex regulatory behaviour and relatively small
number of components makes them tractable examples
for joint theoretical and experimental analysis.

Much molecular data aims to identify components of
the network and to define connections between them.
Generally there is little or no biochemical data for the
numerous parameters, such as the chemical rate
constants, that control the circadian network. In all
but one recent mathematical model of the circadian
clock (Forger and Peskin, 2003), these parameters have
been chosen ‘‘by hand’’. Such an approach becomes
more and more time consuming, and potentially
unreliable, as the number of components in the model
increases. This opens up the very real possibility that
apparent deficiencies in existing models may not be
caused by an incomplete experimental understanding, or
model, but rather by non-optimum choices of the
parameters.

We present a general method for comparing noisy
experimental data with model networks to derive
parameter estimates, and apply this method to improve
our understanding of the circadian network in
Arabidopsis: The first multi-gene loop identified in the
Arabidopsis circadian clock comprises a negative feed-
back loop, in which two partially redundant genes
LATE ELONGATED HYPOCOTYL (LHY) and CIR-

CADIAN CLOCK ASSOCIATED 1 (CCA1) repress the
expression of their activator, TIMING OF CAB

EXPRESSION 1 (TOC1) (Alabadi et al., 2001). Several
other clock genes have been discovered in Arabidopsis

(reviewed in Eriksson and Millar, 2003; Hall et al., 2003;
McWatters et al., 2000), but these either have accessory
functions (Mas et al., 2003) or have not yet been located
relative to the one-loop LHY/CCA1–TOC1 model. We
therefore initiate modelling of the Arabidopsis clock by
analysing the one-loop LHY/CCA1–TOC1 model, using
a method that will be widely applicable in tackling larger
genetic networks. By comparison with experimental
data, the model suggests where additional component(s)
of the clock network may function.
2. Model description

Even the minimal description of the Arabidopsis clock
network as outlined in Fig. 1 required seven coupled
differential equations to model the central loop, yielding
a total of 29 parameters. As in previous clock models
(Leloup et al., 1999; Leloup and Goldbeter, 2003; Ueda
et al., 2001; Kurosawa and Iwasa, 2002; Kurosawa
et al., 2002) Michealis–Menten kinetics were used to
describe enzyme-mediated degradation of proteins, and
Hill functions were used to describe the transcriptional
activation term of the mRNA for LHY and TOC1. As
LHY and CCA1 are indistinguishable for our purposes,
we retain only one gene, LHY, in our model. We took
the following as our mathematical model for the central
circadian network: a LHY–TOC1 feedback loop which
involves the cellular concentrations c

ðjÞ
i ðtÞ of the pro-

ducts of the ith gene (i ¼ L labels LHY, i ¼ T labels
TOC1) where j ¼ m; c; n denotes that it is the corre-
sponding mRNA, or protein in the cytoplasm or
nucleus, respectively.

dc
ðmÞ

L

dt
¼ LðtÞ þ

n1c
ðnÞ
T

a

ga
1 þ c

ðnÞ
T

a �
m1c

ðmÞ

L

k1 þ c
ðmÞ

L

; (1)

dc
ðcÞ
L

dt
¼ p1c

ðmÞ

L � r1c
ðcÞ
L þ r2c

ðnÞ
L �

m2c
ðcÞ
L

k2 þ c
ðcÞ
L

; (2)
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dc
ðnÞ
L

dt
¼ r1c

ðcÞ
L � r2c

ðnÞ
L �

m3c
ðnÞ
L

k3 þ c
ðnÞ
L

; (3)

dc
ðmÞ

T
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¼

n2gb
2

gb
2 þ c

ðnÞ
L

b
�

m4c
ðmÞ

T

k4 þ c
ðmÞ
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; (4)

dc
ðcÞ
T

dt
¼ p2c

ðmÞ

T � r3c
ðcÞ
T þ r4c

ðnÞ
T �

m5c
ðcÞ
T

k5 þ c
ðcÞ
T

; (5)

dc
ðnÞ
T

dt
¼ r3c

ðcÞ
T � r4c

ðnÞ
T �

m6c
ðnÞ
T

k6 þ c
ðnÞ
T

: (6)

Here the various rate constants nk; gk etc. parameterize
transcription (nk; gk), degradation (mk; kk), translation,
(pk), and the nuclear 2 cytoplasmic protein transport,
(rk). There is evidence that LHY and CCA1 proteins
bind as a dimer to the promoter of TOC1 (Daniel et al.,
2004), and that there is only one active binding site on
the TOC1 promoter (Alabadi et al., 2001), so the Hill
coefficient of transcription, b, was set to 2. As there is no
experimental evidence for the Hill coefficient a this was
set to 1. The effect of light appears through the term
LðtÞ: Light is known to give an acute, transient
activation response for expression of LHY and CCA1

(Kim et al., 2003; Kaczorowski and Quail, 2003; Doyle
et al., 2003). This was modelled through a simple
mechanism involving an interaction of a protein P with
the LHY gene promoter. P is a light-sensitive protein
similar to PIF3 in stability (Bauer et al., 2004) that is
present with concentration c

ðnÞ
P :

LðtÞ ¼ q1c
ðnÞ
P Ylight; (7)

where Ylight ¼ 1 when light is present, 0 otherwise. We
propose that P is controlled by an equation of the form

dc
ðnÞ
P

dt
¼ ð1 �YlightÞp3 �

m7c
ðnÞ
P

k7 þ c
ðnÞ
P

� q2Ylightc
ðnÞ
P ; (8)
12 24 36 48 60
0

50

100

150

200

250

300

Time (Hours) 

Lu
m

in
es

ce
nc

e 
(C

ou
nt

 p
er

 s
ee

dl
in

g)

Fig. 2. Typical experimental data sets for the time-variation of mRNA levels

gene (Kim et al., 2003) (left pane), and TOC1 (Makino et al., 2000) (right pan

phase of the peak in TOC1 is much later, at approximately 12 h after dawn.
where the values of the four parameters that appear in
this equation are chosen so as to give an acute light-
activation profile which is close to that observed in
experiment. In principle these could also be optimized
under our scheme but since P is anyway coupled into
Eqs. (1)–(6) via an arbitrary coupling constant q1; which
is varied in our optimization scheme, we consider this an
adequate approach that captures the primary role of P

in mediating light input. The essential features of Eq. (8)
are that P is produced only when light is absent and is
degraded strongly when light is present. We modelled
the acute effect of light at the level of transcription but
note that a similar effect on translation would result in
essentially identical network behaviour (Kim et al.,
2003). This left 23 parameters to be chosen by our
optimization scheme.

The equations were solved using MATLAB, inte-
grated using the inbuilt stiff equation solver ODE15s
(Shampine and Reichelt, 1997). The optimization
process described in the following sections was carried
out by compiling the MATLAB code into C and
running the code on a ‘task farm’ super computer
consisting of 31 � 2:6GHz Pentium4 Xeon 2-way SMP
nodes (62 CPUs in total).

2.1. Scoring qualitative features of network behaviour

Various experimental data sets (Matsushika et al.,
2000; Kim et al., 2003; Mizoguchi et al., 2002) give us
approximate values for the phase and period of the
oscillations in mRNA levels of the known central clock
genes in Arabidopsis, see Fig. 2. TOC1 and LHY mRNA
expression levels have been shown to peak around dusk
and dawn respectively. In contrast neither the absolute
nor the relative levels of LHY and TOC1 mRNA are
known. Due to the lack of time points in RNA
experiments, together with the level of variability (noise)
currently ubiquitous in such biological data it is
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Fig. 3. Convergence of best cost function with number of Sobol points

(dotted line), (Upper pane). Also shown is the trace of the annealing

steps leading to the optimum solution, with D ¼ 27: (black line). The

lower pane shows hDi; the average value of D for the best 100 solutions,

for varying values of the Hill coefficients, a ¼ b: The average value

remains relatively constant, suggesting the value of the Hill coefficients

is not crucial for the optimization of this model.
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inappropriate to compare a model quantitatively to any
particular set of experimental mRNA traces. Although
such a direct quantitative comparison has been at-
tempted in other studies (Mendes and Kell, 1998; Forger
and Peskin, 2003), as well as in cell cycle models
(Zwolak et al., 2001), it is our belief that in cases with
sparse experimental data this simply will not be
appropriate. This motivated us to construct an empirical
cost function designed to give a quantitative value for
the goodness of fit of our solution to ‘‘essential’’
qualitative features present in the experiments.

We constructed our cost function D as simply a sum of
terms that each quantify the agreement between our
model and a qualitative experimental feature. Small
values of the cost function correspond to a model (or set
of parameter values) that give a good qualitative
agreement with the corresponding experimental features.
Wherever possible the weighting of each term in the cost
function was chosen so that an Oð1Þ contribution would
be given for an experimentally acceptable error. There is
inevitably some arbitrariness in how we defined the level
of acceptable error, but at all times we tried to base our
assumptions on inferences from experimental data. In
order to evaluate the terms in the cost function we solved
numerically Eqs. (1)–(8) over 600, 300 h in 12 h light and
12 h dark cycles (LD), followed by 300 h in darkness
(DD) (the first 200 h of each solution are discarded as
transitory). In what follows we identify 1 nmol and 1 h as
the typical concentration and time-scales, and measure
all concentrations and rate constants in units where
these are unity. We initialized our simulation at c

ðjÞ
i ¼ 1:

The cost function is given by

D ¼ dtld
þ dtd

þ df þ dcL
þ dsize: (9)

We now discuss the origin of these terms in turn,
consigning detailed mathematical definitions to Appen-
dix A: dtld

measures the difference between the experi-
mental ‘‘target’’ period and the mean period of the
oscillation in mRNA levels of LHY and TOC1 in
light:dark (LD) cycles exhibited by the model. The term
dtd

gives a similar measure in constant darkness (DD).
These two terms ensure that the entrained and free
running clocks are near limit cycles with the experimen-
tally observed period (stably entrained in LD cycles and
with a free running period greater than 24 h (Millar et
al., 1995)). The third term df measures the difference
between the target phase and the average phase of the
peaks of LHY and TOC1 mRNA expression in LD. It
also ensures that the oscillations are entrained to the LD
cycles. The term dcL

contains a measure of how broad
the peak of LHY mRNA expression is in the proposed
solution in LD cycles and is small only if the trace peaks
sharply, as observed experimentally. This term is also
only small if the peak heights of LHY mRNA
expression drop when going from LD to DD. Finally,
dsize checks that the oscillation sizes are large enough to
be detectable experimentally, and quantifies the degree
to which the clock in the model is damped in darkness:
we require that it is not strongly damped. For details see
Appendix A.

2.2. Optimum model from parameter search

We solved our system of equations for 106 quasi-
random points, each representing a list (vector) of all
parameter values. These were generated using a variant
of the Sobol Algorithm (Appendix B), a scheme to
distribute points (not on any lattice) so as to cover the
space as uniformly as possible. We then proceeded to
calculate the cost function for these 106 random ‘‘Sobol’’
points in parameter space. Encouragingly, the best cost
function obtained after N steps appears to converge, see
Fig. 3. Also shown is how the best 100 values from the
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Sobol sampling vary with increasing Hill coefficients.
Interestingly, we found that the high Hill coefficients
adopted in many previous models are not required to
obtain a near optimal solution. The 50 top solutions all
have Do122 and were broadly distributed in parameter
space (mean of parameter values range from 3.53 to
7.08, standard deviations from 2.14 to 3.19). In our
scheme the 50 points with the lowest cost function score
obtained from the Sobol sampling were passed to a
simulated annealing routine (Appendix B). We then used
the 41 annealed solutions with Do100 as diverse but
reasonable annealed parameter sets for further analysis.

The result of this extensive parameter search is to
show that it is not possible to fit the single-loop model to
all the experimental data. Fig. 4 shows a typical solution
obtained after the simulated annealing, with a score of
D ¼ 81: TOC1 mRNA expression peaks too late in the
daily cycle, and LHY mRNA expression comes up too
soon in the night. This solution oscillates on a limit cycle
in DD with a period of 25 h. Fig. 5 shows the results for
the optimal solution with the lowest cost function score,
D ¼ 27: In this solution, TOC1 and LHY mRNA levels
are both peaking at roughly the correct time, the
solution slowly damps in darkness with a period of
25 h, and the light treatment phase-response curve
(PRC) has a similar shape to experiment, see Fig. 6.
The phases of the peak of LHY mRNA and TOC1

mRNA under LD cycles are not unduly sensitive to light
levels (both an 80% reduction in light levels and a 100%
increase in light levels causes no significant change in
phase). Although not specified in the cost function,
LHY protein levels are peaking 1–2 h after the peak of
LHY mRNA expression, as suggested in Wang and
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1:4992nM; g2 ¼ 3:0412nM; m1 ¼ 10:0982nM=h; m2 ¼ 1:9685nM=h;
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7:3021h�1; k1 ¼ 3:8045nM; k2 ¼ 5:3087nM; k3 ¼ 4:1946nM; k4 ¼

2:5356nM; k5 ¼ 1:4420nM; k6 ¼ 4:8600nM; k7 ¼ 1:2nM; a ¼ 1; b ¼

2:

0:0484nM=h; m7 ¼ 1:2 nM=h; p1 ¼ 4:9753h�1; p2 ¼ 1:2947h�1; p3 ¼

0:5 h�1; r1 ¼ 1:4563h�1; r2 ¼ 0:8421h�1; r3 ¼ 0:0451h�1; r4 ¼

0:0018h�1; k1 ¼ 1:3294nM; k2 ¼ 0:8085nM; k3 ¼ 0:1445nM; k4 ¼

0:2089nM; k5 ¼ 0:3187nM; k6 ¼ 0:3505nM; k7 ¼ 1:2 nM; a ¼ 1; b ¼

2: Lower pane: Protein levels for optimal solution.
Tobin (1998). However, LHY mRNA expression still
over anticipates dawn. We found that 5 of the annealed
solutions had low cost function scores with the
pathological feature that TOC1 mRNA expression had
saturated through the night. This suggests that in future
work an extra term in the cost function might be added
for the profile shape of TOC1 mRNA.

The inadequacies in all the annealed solutions must be
explained by the structure of the network, as the global
search shows that no distribution of parameters gives a
good fit with this network structure. Further examina-
tion of the experimental data shows that TOC1 mRNA
expression starts to fall before LHY mRNA expression
has started to increase, meaning that experimental
efforts should be focused on understanding what is
missing from the network in order to bring down TOC1

mRNA levels at night, see Fig. 7. Also, in order for
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LHY mRNA to be expressed for a shorter time interval
compared to TOC1 mRNA, post-translational modifi-
cation of the TOC1 protein may be required.

Previous papers (Smolen et al., 2001) have carried out
a stability analysis based on the period and amplitude of
solutions after a small percentage increase and decrease
for each parameter value in turn. We have also carried
out such an analysis which shows that, as for previous
models, the solution is extremely sensitive to small
changes of a few parameters, see Fig. 8. For example, a
reduction of five percent in n2; the transcription rate of
TOC1 mRNA, causes the oscillations to damp to
experimentally undetectable levels after 300 h in dark-
ness. We also undertook a more detailed stability
analysis, (data not shown), measuring the variation of
cost function values with small parameter changes. In
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is missing some factor that would serve to bring TOC1 down at the end of
this case the results were similar to that of the stability
analysis solely looking at period and amplitude change
in DD, although additional information could be
observed, such as if the solution becomes biphasic in
LD cycles.

2.3. Simulated mutant analysis

We have also further characterized the output of the
41 annealed parameter sets with Do100; by carrying out
a simulated mutant analysis, see Fig. 9. The mutant
analysis reveals further interesting information about
the role of LHY in the network. Single null mutations in
LHY or CCA1 experimentally result in short periods of
around 21 h (Alabadi et al., 2002). We simulated this
experiment by reducing the translation rate of LHY
protein to half of its original value, and for every single
one of our annealed parameter sets this resulted in a
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long period mutant or arrhythmia. This is because in
our model, a reduction in LHY level delays the
repression of TOC1, so TOC1 mRNA peaks later in
the night, a feature that is not observed experimentally.
This discrepancy suggests that the main role of LHY in
the plant clock is to stop TOC1 mRNA peaking too
early in the day, rather than to bring TOC1 levels down
during the night, which it does in the model. All of the
41 solutions with Do100 showed similar mutant
analysis, suggesting that the failure in this regard is a
generic feature of the network.
3. Discussion

We have modelled the LHY/CCA1–TOC1 feedback
loop of Arabidopsis; which was first proposed by
Alabadi et al. (2001) as an important component of
the plant circadian clock. We developed a cost function
to score the performance of the model with a particular
set of parameter values, together with an exhaustive
method to explore the space of possible parameter
values, in order to identify an optimal set of parameter
values. The resulting model recapitulates many proper-
ties of Arabidopsis circadian rhythms and points to a
specific phase of the circadian cycle, where further
experimentation is required to identify one or more
additional components of the circuit. A significant
advantage of our approach is in determining that a
gene network model is inconsistent with experimental
data because its circuit is incorrect, not due to a poor
choice of parameter values.
The LHY/CCA1–TOC1 loop was proposed, based
upon the mRNA accumulation patterns of Arabidopsis

plants in which these genes were mutated or mis-
expressed (Alabadi et al., 2001; Wang and Tobin, 1998;
Schaffer et al., 1998). Our model of this loop drives
rhythms with the major circadian properties observed in
Arabidopsis; which were specified in the cost function
used to select the parameter values. The model has a
period close to but longer than 24 h in constant
darkness, it entrains to 24 h light:dark cycles, and it
shows peak expression of the LHY/CCA1 and TOC1

mRNAs close to the required phases. It also reproduces
features that were not explicitly specified in the cost
function, such as a PRC to light treatments with the
characteristic shape, Fig. 6. For some parameter values,
the model has a sustained limit cycle in constant
darkness, Fig. 4, though the optimal solution is slightly
damped, as is often observed in experimental data. The
model supports rhythms in constant light, as it does in
darkness (data not shown). We do not address any
temperature effect explicitly, due to the paucity of
relevant molecular data. The model is likely to be
capable of temperature compensation, as much simpler
models can exhibit this behaviour (Ruoff and Rensing,
1996).

The waveforms of LHY and TOC1 expression during
the day match the data closely, both for the optimal
parameter choice, Fig. 7, and with many of the
optimized parameter sets selected from a million quasi-
random sets, Fig. 4, indicating that no further biochem-
ical complexity is necessary to simulate this phase of the
cycle. However, even the optimal parameter choice fails
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to reproduce mRNA accumulation patterns during the
night. LHY mRNA levels start to rise early in the night
in the optimal parameter choice under LD cycles,
anticipating the observed rise by several hours. Simu-
lated mutant analysis highlights this limitation more
clearly. Deletion of either the LHY=CCA1 or the TOC1

function leads trivially to arrhythmia, so another timing
loop must be present in the plant, because complete
arrhythmia is observed in the relevant mutants only in
specific conditions (Mas et al., 2003), if at all (Matsush-
ika et al., 2000; Alabadi et al., 2002). Such components
might simply be paralogues of LHY/CCA1 and TOC1

with non-identical functions (Carre and Kim, 2002;
Eriksson and Millar, 2003) which are absent from the
model. More significantly, partial reduction or increase
in either gene function in the model causes period
changes in the opposite direction to those observed,
Fig. 9. This discrepancy cannot be explained by partial
gene redundancy in the plant, nor by a feature specific to
the optimal parameter set in the model, as it was
observed in all of the annealed solutions with Do100: It
arises because LHY in the model represses TOC1

expression continuously from the mid-night phase, so
reduced LHY function leads to a later peak of TOC1

expression at night and a longer period. Neither LHY
nor CCA1 expression is observed until close to dawn in
the plant (Wang and Tobin, 1998; Kim et al., 2003), so
LHY and CCA1 mutants allow an early rise in TOC1
expression in the day and have a short period. The
component(s) that causes the fall in TOC1 expression
during the night remains to be identified experimentally.

3.1. Model development with limited data

A cost function was used to constrain the behaviour
of the model to the consistent, qualitative features of the
experimental data, because only a few time-series of the
main biochemical components in the model were
available when we initiated modelling. This approach
is effective even for noisy or underdetermined systems,
when data are scarce and variable (for example, among
different laboratories) so fitting to data is undesirable or
impossible. It is easy to understand intuitively and can
be expanded along with the available data. Terms can be
added to the cost function to fit the phenotypes of
mutants, for example. The terms in the cost function
developed here are specifically based on the experi-
mental data known for the Arabidopsis network, and
each term would have to be re-examined if applied to a
different network. However, a cost function containing
similar terms as described here should be useful for
analysing circadian networks in other organisms.
The cost function can potentially combine the qualita-
tive terms, used here, with direct fitting to data. A
clock model was recently fitted to a particular set of
molecular data for the first time (Forger and Peskin,
2003), though without specifying how the starting
parameter values were chosen. The qualitative terms
will no longer be required when sufficient, reliable time-
series data are available for fitting. The need for fitting
will in turn be reduced as parameter values are measured
experimentally.

Neither parameter values nor the absolute levels of
any component in our clock model have been measured,
a situation that is almost inevitable when any gene
network is first defined. Many published circadian
models have found parameter values by manual fitting.
This leads to a bias towards models that perform well
over a broad range of parameter values (for example
those with high Hill coefficients (Kurosawa et al.,
2002)), because a limited exploration of parameter space
is likely to find a sufficiently good solution only for these
models. A model may still fail to fit the data, because the
arbitrary choice of parameter values was incorrect. The
more informative result is that the model fails because
the network structure is incorrect.

We therefore developed a bipartite method to search
parameter space exhaustively, with no prior knowledge
of parameter values. A million starting parameter sets
were generated quasi-randomly, leaving fewer gaps and
generating fewer clusters than a truly random process,
and only bounding each parameter at a maximum value.
The 50 parameter sets that gave the lowest cost function
scores were taken as starting points for optimization by
simulated annealing. This takes predominantly small,
random steps in parameter space around each starting
point. Parameter changes that improve the cost function
score have a high probability of being retained, so the
method converges on the best parameter set near the
starting parameter values. Critically, the optimization
can escape local minima and approach the global
minimum, because some parameter steps are large and
changes that increase the cost function are sometimes
retained. Our method is computationally intensive but
achieves a far greater coverage of parameter space than
the most extensive manual search, finding good solu-
tions with a maximum Hill coefficient of 2. Optimization
may require fewer parameter steps if these can be
directed (Brown and Sethna, 2003), but our method
clearly converges upon parameter values that give an
excellent match to the data, (Fig. 7). The failure of the
model to reproduce gene expression patterns during the
night or the gross phenotypes of clock mutants, despite
this global search of parameter space, indicates that the
gene network in the model is incorrect. We expect that
more complete models of the plant circadian system will
have to incorporate additional feedback loops, not only
to complete the modelling of the gene circuits we
instigate here, but also to incorporate other potential
oscillators, such as nitrase reductase activity (Lillo and
Ruoff, 1984). We look forward to the experimental
characterization of components that will complete the
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model, especially those that function during the
subjective night. Several genes are candidates for such
components, including EARLY-FLOWERING 3,
EARLY-FLOWERING 4, GIGANTEA, and TIME

FOR COFFEE, though their biochemical functions are
presently unknown [reviewed in Eriksson and Millar
(2003)].1
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Appendix A

Here, we describe each term of the cost function, Eq.
(9), in turn.

Firstly,

dtld
¼
X

i¼L;T

hð24 � tðmÞ

i Þ
2=0:15ild ; (A.1)

is the summed error in the period, t; for LHY (L) and
TOC1 (T) mRNA levels in light:dark cycles (LD), where
hild gives the average over the cycles between
200oto300; and a ‘‘marginally acceptable’’ period
difference of 	 25 min contributes Oð1Þ to the cost
function.

Secondly,

dtd
¼
X

i¼L;T

hð25 � tðmÞ

i Þ
2=f id ; (A.2)

where the average of hid is now over 300oto600 (DD).
The biological evidence strongly indicates that the free
running period of the clock is greater than 24 (Millar et
al., 1995), probably about 25, but we have less
confidence in assigning a precise value hence we adopt
values of f ¼ 0:05 if tðmÞ

i p25 and f ¼ 2 if tðmÞ

i 425:
Thirdly,

df ¼
X

i¼L;T

hDF2
i ild þ

s½cðmÞ

i ðt
p
Þ�ld

0:05hcðmÞ

i ðt
p
Þild

 !2
2
4

þ
s½DFi�

5=60

� �2
3
5þ dent: ðA:3Þ
1A clock modelling package including our Arabidopsis model with

the optimal parameter choice can be found at http://www.amillar.org

under Software.
The first term compares the mean difference in phase
over the LD cycles, where DFi ¼ f̄i � fi; fi is the phase
(from dawn) of the RNA peak in the model and f̄L ¼

1 h; f̄T ¼ 11 h are the target phases of the peaks in c
ðmÞ

L

and c
ðmÞ

T ; respectively. We assume a cost that is Oð1Þ for
solutions that differ by an hour. The next two terms
ascribe a cost of Oð1Þ for limit cycle solutions in LD
cycles whose peak heights are within 5 percent, and
whose variations in peak phases are 5min. s½�ld is the
standard deviation for the cycles in LD. The term dent

checks that the solution is truly entrained to the light/
dark cycle, i.e. is not oscillating with the correct phase
simply because of the initial conditions chosen, as
follows: The solution is rerun for 75 h, taking the
solution at 202 h and shifting it back 3 h, i.e. initializing
the t ¼ 202 solution as the t ¼ 199 solution. The new
phase of the second peak is compared to the original
phase of the second peak. If the phase difference is still
near 3 h, then the solution is too weakly entrained, and
the solution is pathological. The LD cycles have failed
to phase shift the response. Hence dent takes the form of
logð0:5Þ= logðdf=3Þ; where df is the phase difference in
hours between the shifted and original solution, and
df=3 is therefore the fraction of the imposed 3 h phase
shift remaining after 2 periods. The term log(0.5) gives
the acceptable remaining phase difference of 1.5 h for
the second cycle, which results in an Oð1Þ contribution
to the cost function.

Next,

dsize ¼
X

i¼L;T

1

hDc
ðmÞ

i ild

 !2

þ
to

te

� �2

: ðA:4Þ

The first term costs for solutions in LD cycle with
oscillation sizes (Dc

ðmÞ

i ¼ ci
ðmÞ
max � ci

ðmÞ

minÞ; less than 1 nm,
and the second term checks that the oscillations do not
decay too quickly when entering DD as follows: to is a
decay constant over the 300 h in DD, to ¼ �300=
logððDcT

ðmÞ

ld � DcT
ðmÞ

d Þ=DcT
ðmÞ

ld Þ; and te gives the accepta-
ble decay constant, that the size of TOC1 oscillations
has dropped by 1

4
over 300 h, �300= logð0:75Þ:

Finally,

dcL
¼

X
i¼2;�2

2=3c
ðmÞ

L ðt
p
Þ

c
ðmÞ

L ðt
p
Þ � c

ðmÞ

L ðt
p
þ iÞ

 !2* +
ld

þ � � �

0:05ðcðmÞ

L ðt
p
� 2Þ � c

ðmÞ

L ðt
m
ÞÞ

c
ðmÞ

L ðt
m
Þ � c

ðmÞ

L ðt
m
þ iÞ

 !2* +
ld

þ 10
hc

ðmÞ

L ðtpd Þild

hc
ðmÞ

L ðtplÞild

 !4

: ðA:5Þ

The first term checks that the LHY mRNA expression
profile has a sharp peak in LD cycles, with an Oð1Þ
contribution if LHY’s expression level has dropped by 2

3

of its oscillation size within 2 h before and after its peak

http://www.amillar.orgunderSoftware
http://www.amillar.orgunderSoftware
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of expression. The second term checks that LHY mRNA
expression has a broad minimum, with an Oð1Þ
contribution if 2 h before and after the minimum point
LHY’s expression has only increased to 5 percent of the
level 2 h before LHY’s peak. The last term checks that
the peak of LHY mRNA expression drops from LD into
DD, as it loses its light activation.

Throughout the implementation the cost function was
‘‘capped’’ at Dmax ¼ 104; such that D ! Minð104;DÞ:
Appendix B

We implemented the Antoneev–Saleev variant of the
Sobol quasi-random number generator to choose para-
meter values (vectors) in our d ¼ 23 parameter space,
adapted from Press et al. (1996). The initial values as
described in Joe and Kuo (2003) were used, allowing
number generation in up to 1111 dimensions. We carried
out the following change of parameters ĝ1 ¼ ga

1; ĝ2 ¼

gb
2; n̂2 ¼ n2gb

2 , and then chose the parameter space for
the 23 parameters to be optimized to be bounded 2

½0; 10�; where our typical parameter scale is unity in
nmol ¼ hours ¼ 1: We annealed according to a stan-
dard Metropolis algorithm (Brooks and Morgan, 1995).
Temperature reduction was carried out linearly each
step, from Tmax to 0 over the 100 000 annealing steps.
Tmax was set as the average cost function value of the
best 50 solutions. The step size jdrj in parameter space
was set to allow the optimization routine after 100 000
annealing steps to travel a distance approximately equal
to the distance between two neighbouring Sobol points.
This approach yields jdrj ¼ 0:0431; and the solution
was reset to the best found solution if a better solu-
tion had not been found over the previous 10 000 points
(see Fig. 3).
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