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ABSTRACT

Method: The objective of the present article is to propose and
evaluate a probabilistic approach based on Bayesian networks
for modelling non-homogeneous and non-linear gene regulatory
processes. The method is based on a mixture model, using latent
variables to assign individual measurements to different classes. The
practical inference follows the Bayesian paradigm and samples the
network structure, the number of classes and the assignment of
latent variables from the posterior distribution with Markov Chain
Monte Carlo (MCMC), using the recently proposed allocation sampler
as an alternative to RUIMCMC.

Results: We have evaluated the method using three criteria: network
reconstruction, statistical significance and biological plausibility. In
terms of network reconstruction, we found improved results both
for a synthetic network of known structure and for a small real
regulatory network derived from the literature. We have assessed
the statistical significance of the improvement on gene expression
time series for two different systems (viral challenge of macrophages,
and circadian rhythms in plants), where the proposed new scheme
tends to outperform the classical BGe score. Regarding biological
plausibility, we found that the inference results obtained with the
proposed method were in excellent agreement with biological
findings, predicting dichotomies that one would expect to find in the
studied systems.

Availability: Two supplementary papers on theoretical (T) and experi-
mental (E) aspects and the datasets used in our study are available
from http://www.bioss.ac.uk/associates/marco/supplement/
Contact: marco@bioss.ac.uk, dirk@bioss.ac.uk

1 INTRODUCTION

The ultimate objective of systems biology is the elucidation of
the regulatory networks and signalling pathways of the cell. The
ideal approach would be the deduction of a detailed mathematical
description of the entire system in terms of a set of coupled
non-linear differential equations. As high-throughput measurements

*To whom correspondence should be addressed.

at the cell level are inherently stochastic and most kinetic rate
constants cannot be measured directly, the parameters of the system
would have to be estimated from the data. Unfortunately, multiple
parameter sets of non-linear systems of differential equations
can offer equally plausible solutions, and standard optimization
techniques in high-dimensional multimodal parameter spaces are
not robust and do not provide a reliable indication of the confidence
intervals. Most importantly, model selection would be impeded by
the fact that more complex pathway models would always provide
a better explanation of the data than less complex ones, rendering
this approach intrinsically susceptible to over-fitting.

To assist the elucidation of regulatory network structures,
probabilistic machine learning methods based on Bayesian networks
can be employed, as proposed in the seminal paper by Friedman
et al. (2000). In a nutshell, the idea is to simplify the mathematical
description of the biological system by replacing coupled differential
equations by simple conditional probability distributions of a
standard form such that the unknown parameters can be integrated
out analytically. This results in a scoring function (the ‘marginal
likelihood’) of closed form that depends only on the structure
of the regulatory network and avoids the over-fitting problem
referred to above. Novel fast Markov Chain Monte Carlo (MCMC)
algorithms, like Grzegorczyk and Husmeier (2008), can be applied
to systematically search the space of network structures for those
that are most consistent with the data. To obtain the closed
form expression of the marginal likelihood referred to above,
two probabilistic models with their respective conjugate prior
distributions have been employed in the past: the multinomial
distribution with the Dirichlet prior, leading to the so-called BDe
score (Cooper and Herskovits, 1992), and the linear Gaussian
distribution with the normal-Wishart prior, leading to the BGe score
(Geiger and Heckerman, 1994). These approaches are restricted
in that they either require the data to be discretized (BDe) or can
only capture linear regulatory relationships (BGe). A non-linear
non-discretized model based on heteroscedastic regression has been
proposed by Imoto et al. (2003). However, this approach no longer
allows the marginal likelihood to be obtained in closed form and
requires a restrictive approximation (the Laplace approximation)
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to be adopted. Another non-linear model based on node-specific
Gaussian mixture models has been proposed in Ko et al. (2007).
Again, the marginal likelihood is intractable. The authors resort
to the Bayesian information criterion (BIC) of Schwarz (1978) for
model selection, which is only a good approximation to the marginal
likelihood in the limit of very large datasets. In the present article
we propose a non-linear generalization of the BGe score, which
is motivated by the fact that any probability distribution can, in
principle, be approximated arbitrarily closely by a mixture model.
Our method is based on recent work by Nobile and Fearnside
(2007), who proposed the allocation sampler as an alternative to
the computationally expensive approach of reversible jump Markov
chain Monte Carlo (RIMCMC) (Green, 1995). We will describe the
method in Section 2. We have evaluated our approach on a set of
synthetic and real-world datasets described in Section 3 according to
criteria outlined in Section 4. The results are presented in Section 5
and discussed in Section 6. A concluding summary of the proposed
method and the results can be found in Section 7.

2 METHOD

We focus on the most important methodological aspects. A more detailed
representation can be found in Supplementary Material T.

2.1 Bayesian network methodology

Static Bayesian networks (BNs) are interpretable and flexible models for
representing probabilistic relationships between interacting variables. At a
qualitative level, the graph of a BN describes the relationships between the
domain variables in the form of conditional independence relations. At a
quantitative level, local relationships between variables are described by
conditional probability distributions. Formally, a BN is defined by a graph
G, a family of conditional probability distributions F, and their parameters
¢, which together specify a joint distribution over the domain variables.

The graph G of a BN consists of a set of N nodes (variables) Xi,..., Xy
and a set of directed edges between these nodes. The parent set of node
X,, symbolically 7,, is defined as the set of all parent nodes of X,,, that
is, the set of nodes from which an edge points to X, in G. The structure
of a static BN is defined to be a directed acyclic graph (DAG), that is, a
directed graph without any cycles of directed edges (loops). It is due to this
acyclicity constraint that the joint probability distribution in BNs can be
uniquely factorized as follows:

N
P(X1, .. X)) =] [P l) M

n=1

Stochastic models for Bayesian networks (Friedman et al., 2000) specify
the distributional form of the local probability distributions P(X,|w,). Given
data D and a parametric model, (DAGs), G can be scored with respect to
their posterior probabilities:

PG, D) PDIGPG)
P(D) Y. P(DIGHP(G")’

where P(D|G) is the marginal likelihood and P(G) is the prior distribution
over the space of graphs. For two stochastic models BDe and BGe a
closed-form solution can be derived for the likelihood P(D|G) (Cooper and
Herskovits, 1992; Geiger and Heckerman, 1994).

When time series data (Xj ;,...Xn ();=1,....m have been collected, dynamic
Bayesian networks (DBNs) can be employed. In DBNs edges correspond to
interactions with a time delay t; e.g. for T =1 an edge pointing from X; to X;
means that the realization of X; at time point ¢ is influenced by the realization
of X; at the previous time point # — 1. In DBNs parameters are tied such that
the transition probabilities between time slices t— 1 and ¢ are the same for

P(GID)= (@)

all ¢, resulting in a homogeneous Markovian dependence. Because of the
time delay of interactions and the bipartite graph structure thus imposed,
the acyclicity of the underlying graph G is automatically guaranteed, and
Equation (1) is replaced by:
N
PXi1 g, Xn,0) = [ [ PGl i-1) 3)

n=1

where 7, ;—1 denotes the parent set of X, at the previous time point r—1.
For more details see Friedman et al. (1998).

MCMC methods can be used for sampling DAGs G from the posterior
distribution P(G|D). The structure MCMC approach of Madigan and York
(1995) generates a sample of graphs G, ..., Gr as follows: given a graph G;,
a new candidate graph G;; is proposed with probability:

1 —, g[ 1€N(gi)
116 =1 V@ Fit 4
Q(g +1 Ig) { 0 s gi+| ¢N(gl) @

where N (G;) denotes the neighbourhood of G;, that is the collection of all
valid graphs that can be reached from G; by deletion, addition or reversal
of one single edge of the current graph G;, and |[N(G;)| is the cardinality
of this collection. We note that all neighbour graphs G;y; have to be
acyclic when non-dynamic BNs are employed. The graph G;; is accepted
with probability:

P(DIGi+DP(Giv1) NG
P(DIGHP(G)  IN(Git1)

otherwise the chain is left unchanged, symbolically G; | :=G;. The Markov
chain {G;} converges to the posterior distribution P(G|D) (Madigan and
York, 1995). If a fan-in restriction is imposed on the cardinality of the parent
sets, all graphs possessing a node with more than fan-in parent nodes have
to be excluded from the graph neighbourhoods. Structure MCMC generates
a graph sample {Gy,...,Gr}, from which posterior probabilities of edges
can be computed. We focus on undirected edges for independent data and
directed edges for time-dependent data. There is an undirected edge between
X; and X; (i<j) in G, if G possesses either the edge X; — X; or the edge
X; < X;. Likewise, there is a directed edge from X; to X; (i#j) in G, if G
possesses the edge X; — X;. An estimator for the posterior probabilities of
an edge is given by the fraction of graphs in the sample that contain the
edge of interest. When the true graph for the domain is known, the concept
of receiver operator characteristic (ROC) curves and area under receiver
operator characteristic (AUROC) values can be used to evaluate the global
network reconstruction accuracy of BN inference (see e.g. Husmeier (2003)
for details). An alternative and more intuitive criteria is given by (TP|[FP=5)
counts: for each MCMC output a threshold v is imposed on the inferred edge
posterior probabilities such that five false positive (FP) edges are extracted
and the corresponding number of true positive (TP) edges, symbolically
(TP|FP=5), exceeding the threshold 1, is counted (Werhli et al., 2006).

A(Gir11G)=min{1, ®

2.2 Gaussian mixture Bayesian network model

We assume that we have either m independent and identically distributed
(iid) observations (BNs) or m+1 time-dependent observations with a
homogeneous first-order Markovian dependence structure (DBNs) for the
variables X1,...,Xy. This gives a dataset matrix of size N-by-m, where D;
(j=1,...,m) s the j-th observation of the N nodes. The allocation vector Vof
size m defines an allocation of the m observations to /C mixture components:
f/(j):k means that the j-th observation is allocated to the k-th component.
DVK) denotes the data subset consisting of all observations allocated to the
k-th component by V (1 <k <K). The joint posterior probability of a graph
G, an allocation vector 9 and /C mixture components can be factorized as
follows:

P(G.V,K.D)
P(D)

=P(I)P(VIK)P(G)P(DIG,V, K)

P(G.V,K|D)= «P(G,V,K,D) (6)
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where
K

P(DIG.V.KO)=[[P(DVP\g) )
k=1

In Equation (7) the likelihood terms P(DY-|G) for the data subsets DV-5)
given the same graph G can be computed independently with the BGe
scoring metric of Geiger and Heckerman (1994), as derived and discussed
in Supplementary Materials T. If no observation is allocated to the k-th
component (DV0 =), then P(DYVP|G) is equal to 1. As we do not have
any prior knowledge about the graph topology we assume a uniform prior
distribution on graphs for the real gene expression data, P(G)=const. For
the synthetic Raf-Mek-Erk network data we employ a more restrictive graph
prior (see Supplementary Materials T and E). For the prior on I, P(K),
we take a truncated Poisson distribution with parameter A =1 restricted to
1 <K <Cmax. This prior is known to be suitable for finite mixture models
(Nobile, 2005). We further assume that the probability distribution of the
allocation vector ¥ conditional on K is given by:

K
POIK.p=] [r}* ®)
k=1
where p=(pi,....pxc)T with Z,’le pr=1 are the non-negative mixture

weights, and ny is the number of observations allocated to the k-th mixture
component by V. The prior on the mixture weights p=(p1, ..., pxc)” is chosen
to be a Dirichlet distribution, P(p)=Dir(ay,...,ax), with hyperparameters
a=(ay,...,ax)’. This prior is conjugate, and the marginal probability of v
conditional on K is thus given by

P(f/|/<)=/P(\)uc,ﬁ)P(ﬁ)dﬁ:Dir(m 0l e o) )

2.3 Gaussian mixture allocation MCMC inference

The new Gaussian mixture allocation MCMC sampling scheme (BGM)
generates a sample from the joint posterior distribution P(G, IC, f/lD) given
in Equation (6) and comprises six different types of moves in the state-space
[G.K, f)]. The first move type is a structure MCMC single edge operation on
the graph G while the number of components /C and the allocation vector y
are left unchanged. According to Equation (4), a new graph Gis proposed,
and the new state [G, C, fi] is accepted or rejected according to Equation (5)
where the likelihood terms P(D|G) in Equation (5) have to be replaced by
the P(D|G, K, f)) terms given in Equation (7). The five other move types are
adapted from Nobile and Fearnside (2007) and operate on Voron K and V. If
there are /C > 2 mixture components, then moves of the type M1 and M2 can
be used to re-allocate some observations from one component k; to another
one k. That is, a new allocation vector V¥ is proposed while G and K are
left unchanged. The Ejection move type proposes an increase in the number
of mixture components by one and simultaneously tries to re-allocate some
observations to fill the new component. More precisely, it randomly selects
a mixture component and tries to re-allocate some of its observations to the
newly proposed component KC+ 1, while G is left unchanged. The Absorption
move is complementary to the Ejection move and decreases the number of
mixture components by one. It randomly selects two mixture components
and deletes one of them after having reallocated all of its observations to
the other component. The acceptance probabilities for M1, M2, Ejection and
Absorption moves are of the same functional form:
| POIK) P(DIG.V.K) QO*V) P(K")
"POVIK) P(DIG.VIKT) QVIV) PK)
where the likelihood terms have been specified in Equation (7), the
proposal probabilities Q(.|.) depend on the move type (M1, M2, Ejection
or Absorption), and K* = for M1 and M2 moves K* =K+ 1 for Ejection
moves, and K* =/C—1 for Absorption moves. See Supplementary Material
T and Nobile and Fearnside (2007) for details. Finally, the sixth move type
uses Gibbs sampling to re-allocate a single observation by sampling its new
allocation from the corresponding univariate conditional distribution, while
leaving /C and the other components of v unchanged.

(10

3 DATA

We have evaluated the proposed method on synthetic data generated
from a widely studied protein signalling network and on gene
expression time series from two different biological systems. For
details of the simulation studies see Supplementary Material E.

3.1 Synthetic data

For a comparative evaluation study, Werhli et al. (2006) generated
synthetic datasets for the Raf-Mek-Erk signalling pathway presented
in Sachs er al. (2005), which consists of 11 nodes representing
phosphorylated proteins and 20 directed edges. As Werhli er al.
(2006) assigned Gaussian regulatory mechanisms with varying
(randomly sampled) parameters, we can generate Gaussian mixture
network data as follows: for obtaining data with K=1,...,5
components we randomly selected C of the original datasets,
sampled the same number of observations m/K from each and
merged these observations to a single dataset of size m. For each
of 16 combinations of m (m=30,60, 120, 180) and K we generated
five datasets by applying this procedure. Additionally, for each
K=1,...,5 we generated five further datasets along this line Werhli
et al. (2006) with m =480 observations each.

3.2 Bone marrow-derived macrophages

Interferons (IFNs) play a pivotal role in the innate and adaptive
mammalian immune response against infection, and central research
efforts, therefore, aim to elucidate their regulatory interactions
(Honda et al., 2006). For the present study, we have applied our
method to gene expression time series from bone marrow-derived
macrophages, which were sampled at 24 x 30 min time intervals.
The macrophages were subjected to three external conditions:
(1) infection with Cytomegalovirus (CMV), (2) treatment with
Interferon Gamma (IFNy) and (3) infection with Cytomegalovirus
after pretreatment with IFNy (CMV+IFNy). To obtain the gene
expression profiles, samples derived from the macrophages were
hybridized to Agilent mouse genome arrays. Samples were
co-hybridized with a pooled common control RNA. Expression
levels were obtained in the form of logy scale signal intensity
ratios between the sample and the pooled control RNA. Differential
dye-label incorporation between the two samples on each array was
corrected by applying a within-array, non-linear, loess normalization
to the ratios. Global non-biological variations between ratio
distributions were corrected by applying median-absolute-deviation
between-array normalization. We focus on time series of the
Interferon regulatory factors (Irfs) 1, 2 and 3 (which we write as
Irf1, Irf2 and Irf3, respectively), as a gold standard network for the
interactions between these factors can be derived from the literature
(Darnell et al., 1994; Raza et al., 2008): Irf2 <« Irfl <« Irf3.
The Irfs are the key regulators in the response of the macrophage
cell to pathogens. They mediate the cellular signalling that leads to
a transcriptional response to the initial binding events on the surface
of the cell.

3.3 Circadian regulation in Arabidopsis thaliana

We have also applied our method to two gene expression time series
from A.thaliana cells, which were sampled at 13 x 2 h time intervals
with Affymetrix microarray chips, and robust multi-array (RMA)
normalized. The expressions were measured twice independently
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under experimentally generated constant light condition, but differed
with respect to the prehistories. In the first experiment, 75, the plant
was entrained in a 10h:10h light/dark cycle, while the plant in the
second experiment, Tpg, was entrained in 14h:14h light/dark cycle.
Our analysis focuses on nine genes, namely LHY, CCA1, TOCI,
ELF4, ELF3, GI, PRR9, PRR5 and PRR3, which are known to be
involved in circadian regulation (Mas, 2008; Salome and McClung,
2004).

4 EVALUATION

To evaluate the proposed method (BGM), we have compared it
with Bayesian learning of homogeneous BNs using the standard
BGe score, as described in Geiger and Heckerman (1994). We
have applied a 3-fold evaluation procedure. First, we use static
synthetic network data to show that if the data are, in fact,
of a heterogeneous nature, BGM achieves improved network
reconstruction results. Second, using gene expression time series
from bone marrow-derived macrophages, we focus on a small
subsystem of the IFN pathway whose biology is well understood,
and we demonstrate that BGM leads to a better pathway
reconstruction. Third, we consider a larger set of circadian genes
from A.thaliana. Since the true network structure in this case is
not known, we apply two standard methods from statistics for the
evaluation: Bayes factors and predictive distributions. We briefly
describe these methods in the remainder of this section. The
mathematical details can be found in Supplementary Material T.
We want to compare two competing hypotheses. According to the
null hypothesis Hy, the conventional homogeneous DBN (BGe) is
the adequate model. We want to compare this with the alternative
hypothesis Hj that the proposed non-homogeneous DBN (BGM)
provides the right description of the system. We want to pursue a
Bayesian approach, according to which the decision between the
two hypotheses is based on the Bayes factor: P(D|H)/P(D|Hp).
Note that the two hypotheses are nested, and that P(D|Hp)=
P(D|K=1,H|). We can therefore follow Huelsenbeck ez al. (2004)
and calculate the Bayes factor using the Savage-Dickey ratio
(Verdinelli and Wasserman, 1995):

P(D|H;)  P(K=1|H))
P(D|Hy) P(K=1|D,H))

(1)

where K is the number of mixture components (segments). The
validity of Equation (11) can easily be proven from Bayes rule:
P(DIK=1,H))P(K=1|H})

P(K=1|D,H;) = BDIHY) (12)

As an alternative procedure, we adopt an approach based on the
predictive distribution promoted in Vehtari and Lampinen
(2002). However, as opposed to the authors we do not
resort to a cross-validation procedure, but exploit the fact
that in our experiments gene expressions were obtained under
different experimental conditions: CMV, IFN,;, and CMV+IFN,,
(macrophages) or Tpp and Tpg (circadian genes), respectively.
Denote by D the gene expression data obtained under a condition
used for training. Denote by D the gene expression data obtained
from a separate experiment under a different condition. We
can then base the hypothesis test on a comparison of the
predictive distributions P(f)lD,H]) and P(f)lD,Ho). Note that
these distributions measure how well new independent test data D

can be predicted under the two hypotheses, using the training data D.
As before, I denotes the number of mixture components, } denotes
the allocation vector, G denotes the graph, and let g denote the vector
of parameters associated with G. We get the following expression
for the predictive distribution:

P(DID.Hy= Y | P(DIK.V.G.4.H)P(K.V.G.4|D.H)dg (13)

K,V,6

A possible approach is to approximately sample [/C, f/, Gl and ¢ from
the posterior distribution P(IC,f/,Q,ZﬂD,Hi) with MCMC and to
approximate the integral in Equation (13) by a sum over this sample.
A better method is to use the expansion P(/C, f/, G,q|D,H))=
P@GIK. V.G, D,H)P(K,V,G|D,H;) and draw on the fact that

WK, V.G, D)= / POIK.V.G.5. H)PGIK.V.G.D.H)d (14)

can be calculated analytically (Geiger and Heckerman, 1994) and
Supplementary Material T). Inserting (14) in (13) yields:

P(DID.H)= Y W(K.V.G.DP(K.V.GID.H)  (I5)
K.Vv.g

which in  practice is computed from a sample
{IK1,V1,611,....[Kr, Vr,Gr1} approximately drawn  from
the posterior distribution P(/C,V,G|D, H;) with MCMC:

T
P(D|D,H))= %Zwm,ﬁi,gh@ (16)

i=1

The computation of ‘-I’(IC,f/,g ,ﬁ) in (14) requires only a minor
modification of the standard BGe score discussed in Geiger and
Heckerman (1994). The vector V acts as a filter dividing the
data into different categories, for which separate BGe scores are
gomputed. For instance, if we have 2 states, 10 time points and
V=[1111122222], then separate BGe scores are computed for the
first five and the last five time points. The computation of the BGe
score is modified by the fact that the prior distribution P(¢|G, H;)
is replaced by the posterior distribution P(ZﬂlC,f/,g,D,Hi). This
results in a straightforward modification of the score as follows:
in Equation (13) of Geiger and Heckerman (1994), those training
data that correspond to the corresponding state k, {D; € DIfJ(/') =k},
are included in the conditioning part of the distribution, and the
sufficient statistics are adjusted accordingly. We note that BDe and
BGM cannot be compared in terms of predictive distributions, as
the required data discretization (BDe) is not part of the BN model.
That is, while BGM and BGe model the same datasets D and D,
BDe is based on their discretized counterparts, resulting from some
(heuristic) pre-processing.

5 RESULTS

The mean AUROC values and the mean (TP|FP=5) counts for
assessing the reconstruction of the Raf-Mek-Erk pathway from
the synthetic data, described in Section 3.1, are represented as
histograms in Figures 1 and 2. It can be seen that BGM performs
significantly better than BDe and BGe for almost all combinations
of C and m. Only if there is either one single component or
a small sample size (m=30), there is no (significant) difference
between BGM and BGe. In particular for =1, BGM assigns
all observations to one single component, and so does not differ
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Fig. 1. Raf-Mek-Erk network reconstruction accuracy for synthetic data. Histograms of the network reconstruction accuracy for different combinations of
Ktrue KCtrRUE =1, ...,5) and sample size m (m =30,60, 120, 180) assessed in terms of mean AUROC values (panels (a—e)) and (TP|FP =5) counts (panels
(f-j)) derived from undirected edges. White bars refer to BDe, grey bars refer to BGe, and black bars refer to BGM. The SDs are indicated by vertical

black lines.

1 20,
08 15
0.6|
10
0.4
02 §
0 1 2 3 4 5 0 1 2 3 4 5

(a) AUROC values (b) (TPIFP=5) scores

Fig. 2. Raf-Mek-Erk network reconstruction accuracy for synthetic data
with m=480. Histograms of the network reconstruction accuracy for
Ktrue=1,...,5 assessed in terms of mean AUROC values (a) and
(TP|FP=5) counts (b) derived from undirected edges. White bars refer to
BDe, grey bars refer to BGe and black bars refer to BGM. The SDs are
indicated by vertical black lines.

from BGe. Figure 3 reveals that BGM infers for each number
of components JCTRyg the correct number of components for
the synthetic data with m=480 observations. Histograms of the
numbers of inferred components for the synthetic data with fewer
data points m are provided in Figure 1 in Supplementary Material E.

A comparison of Figures 1 and 2 reveals that the reconstruction
accuracy is slightly worse for the datasets with m =480
observations. This finding might appear counter intuitive, as larger
datasets contain more information and should therefore lead to better
performances. However, our finding is consistent with the fact that
increased dataset sizes lead to likelihood landscapes that are more
rugged and, hence, result in increased mixing and convergence
problems. This shortcoming of the structure MCMC sampler by
Madigan and York (1995) has already been reported (e.g. see
Grzegorczyk and Husmeier, 2008).

For the macrophage gene expression time series, BGM infers
K =2 components for the conditions CMV and IFNy, while for the
third condition (CMV+IFNy) most of the sampled states consist
of =1 component only, as shown in Figure 4. The fraction of
sampled states for which two observations i and j are allocated to
the same component k (1 <k <K) can be used as a connectivity
measure C(i, j). Figure 5 displays the resulting connectivity matrices
graphically as heat matrices. From the heat matrices the same

systematic trend can be observed for the three conditions. The
first part (observations no. 2—6) and the last part of the three time
series (observations no. 8-25) are allocated to different components.
For condition CMV (IFNy) the allocation of observation no. 7
(no. 9) is not fixed, that is, the allocation changes during the MCMC
simulation. For CMV + IFNy, whose number of components peaks
at =1 (Fig. 4), the separation between the two parts is less
pronounced, though consistent with the other results. To understand
whether BGM also leads to a better network reconstruction accuracy,
we compare the mean posterior probabilities of the true and false
edges of BGM in Figure 6 with those obtained from BGe and BDe.
For the IFNy condition (Fig. 6b) it becomes obvious that BGM has
performed substantially better than BGe and BDe. For the other two
conditions the difference between the posterior means for the true
and the false edges is also best for BGM, but the difference is less
pronounced [BDe: 0.24, BGe: 0.24, BGM: 0.39 (CMV) and BDe:
—0.42,BGe: 0.09, BGM: 0.14 (CMV +IFNy)]. Since it appears that
the three conditions do not lead to systematic deviations between
the expression profiles of Irfl, Irf2 and Irf3, we treat the three
experiments as independent replications and compute predictive
probabilities, as discussed in Section 4. The predictive probabilities
for BGM are much higher than those of BGe (Table 2). This finding
provides further evidence that BGM does not overfit the data but
outputs results that can be confirmed by independent replications.
The BGM/BGe Bayes factors are: 36.45 (CMV), 2.73 (IFNy) and
0.71 (CMV +IFNy). This finding is consistent with Figure 4, where
the peaks for CMV and IFNy are at 2, while CMV +IFNy peaks at
1. Gene expression time series plots and scatter plots for the three
Irf factors can be found in Supplementary Material E.

For both A.thaliana gene expression time (see
Supplementary Material E) the number of components inferred
with BGM peaks at 2 (Fig. 7a and b). The heat matrices shown in
Figure 7a and b appear to be of a similar structure, but subject to
a translation along the main diagonal. More precisely, it appears
that the transition from the first to the second component is shifted
by 2-3 time points (4-6 h). Compared with BGe the Bayes factors
are in favour of BGM: 5.66 (T»g) and 9.41 (T5g). The predictive
probabilities are given in Table 1 and confirm the improved
generalization performance. Further plots for the Arabidopsis data

series
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Fig. 3. Histograms of the numbers of BGM components for synthetic Gaussian data with m =480 observations. The posterior probabilities (vertical axis) of
the number of components K (horizontal axis) have been estimated from the MCMC trajectories. For Ktryg =1,...,5 the MCMC trajectories for the five
datasets have been merged.

0.5r 0.5

2 3 2 3 1 2 3 4
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Fig. 4. Histograms of the numbers of BGM components for macrophage gene expression time series. For each experimental condition the posterior probability
(vertical axis) of the number of components K (horizontal axis) have been estimated from the MCMC trajectories.

10 15 10 15 ; 5 10 15 20 25
(a) CMV (b) IFNy (c) CMV-+IFNy

Fig. 5. Graphical presentation of the temporal connectivity structure for the macrophage gene expression data. The figure shows heatmap representations
that indicate the estimated posterior probability of two time points being assigned to the same state (component). The probabilities are represented by a grey
shading, where white corresponds to a probability of 1, and black corresponds to a probability of 0. The numbers on the axes represent the time points of the
time course experiment. The analysis was repeated for all three experimental conditions CMV, IFNy and CMV +IFNy, as explained in the text.

are provided in Supplementary Material E, and the inference results reveal that BGM succeeds in inferring the correct number of
are discussed in more detail in Section 6. components. To assess whether BGM achieves any improvement for
real biological applications, we applied it to gene expression data
obtained from two different platforms (Agilent and Affymetrix) for
two different systems: macrophages challenged with viral infection,

6 DISCUSSION

The results for the synthetic data generated from the Raf-Mek- and circadian rhythms in plants.

Erk pathway of Sachs et al. (2005) show that the proposed BGM For macrophages challenged with CMV or pretreated with IFNy,
scheme consistently outperforms the conventional BGe and BDe BGM tends to infer a two-stage process (Fig. 4). This two-stage
metrics in terms of global network reconstruction accuracy (Figs 1 process reflects a state change in the host macrophage brought about
and 2). This confirms that BGM is superior when the data stem by infection (CMV) or immune activation (IFNy ), and can be found
from a mixture distribution, and that the proposed sampling scheme in all three experimental conditions (Fig. 5). Interestingly, though,

(allocation MCMC) renders the inference, which is more complex this state change is less pronounced in the combined condition
than for the conventional case, practically viable. Furthermore, CMV+IFNy (Fig. 4c), where the Bayes factor does not support
histograms of the number of inferred mixture components (Fig. 3) the more flexible heterogeneous model (see the previous section).
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Fig. 6. Reconstructing the regulatory network of the Irfs. (a—c): Mean posterior probabilities (vertical axis) of true and false edges in the Irf regulatory
network, inferred with BDe, BGe and BGM (horizontal axis) from the macrophage gene expression time series. According to the biological literature the true
edges are: Irf1 — Irf2, Irf2— Irf1 and Irf3— Irf 1, while the edges Irf 1 — Irf3, Irf2— Irf3 and Irf3 — Irf2 are spurious. In (d) an AUROC histogram plot
is given. For each of the three conditions the histogram shows bars of the BDe (white), BGe (grey) and BGM (black) AUROC values. It can be seen that
BGM is never inferior to BDe or BGe in terms of AUROC scores, but BGM outperforms (i) BDe for conditions CMV and CMV +IFN,, and (ii) BGe for

conditions IFN,, and CMV +IFN,,.

Table 1. Logarithmic predictive probabilities for the A.thaliana data:
log¢(P(D|D, Hy)) (BGE) and log.(P(D|D, H1)) (BGM)

Table 2. Logarithmic predictive probabilities for the macrophage data:
log.(P(D|D, Hy)) (BGe) and log.(P(D|D, H)) (BGM)

D H; D= T2 D= Tog
T2 BGe - —64.29 (£0.29)
BGM - —53.69 (£0.42)
Tos BGe —63.93 (£0.22) —
BGM —54.78 (£0.63) -

The SDs of the logarithmic probabilities are given in brackets.

This observation is consistent with the known biological responses
of macrophages to simultaneous infection by virus (mCMV) and
immune (IFNy) activation. It suggests that upon dual challenge with
both an infection and immune activation (CMV +1IFN,,) signalling
leads to a pronounced singular response. This is in agreement with
observations of cooperation between viral and immune signalling
in effective vigorous anti-viral state within the host macrophage, as
discussed in Benedict et al. (2001).

For the A.thaliana gene expression time series, BGM also infers
a two-stage process (Fig. 7). In this application, the two stages are
most likely related to the diurnal nature of the dark/light cycle. We
have applied our method to two sets of plant samples, which were
subjected to different prehistories, related to different lengths of the
artificial, experimentally controlled light/dark cycle. Although the
two-stage nature of the process is preserved, the state co-allocation
posterior probabilities, shown in the heatmap of Figure 7, points
to a phase shift of about 4-6 h as a consequence of the increased
day length. This phase shift is biologically plausible and indeed
expected. It can be explained by the early phase of entrainment that
is required to elicit a phase delay that matches the 24-h period of
the wild-type plants to the longer light/dark cycle (75g), compared
to the later phase of entrainment required to elicit a phase advance
to match the shorter light/dark cycle (T5¢) (Johnson et al., 2003).

We anticipate that a non-linear and non-homogeneous
generalization of (Bayesian) networks will have broader general
utility for reconstructing regulatory networks in systems biology.
In this regard there is increasing interest in the development of new
statistical methods, as exemplified by the recent and related work of
(Lebre, 2008). Our article complements this work and constitutes a
natural generalization of the BGe score of (Geiger and Heckerman,
1994) by applying the ideas of mixture models and allocation

D="Drgst
D=Drrain Model CMV IFNy CMYV and IFNy
CMV BGe - —76.01 (£0.07) —45.26 (+0.03)
BGM - —63.63 (£0.02) —33.80 (£0.38)
IFNy BGe —56.78 £0.05 - —57.30 (£0.05)
BGM —39.62 £0.02 - —42.69 (£0.11)
CMV + BGe  —37.76 (£0.08) —69.19 £0.06 -
IFNy BGM —21.67 (£0.33) —53.26 +£0.51 -

The SDs of the logarithmic probabilities are given in brackets.

sampling presented in Nobile and Fearnside (2007). This is an
advantage over the work of Ko ez al. (2007). While the latter model
is more flexible owing to the fact that different nodes can have
different breakpoints, it leaves the computation of the marginal
likelihood intractable. The authors resort to BIC (Schwarz, 1978)
as a crude approximation to the marginal likelihood. However, this
approximation is only valid in the limit of very large datasets, and
BIC is known to be over-regularized in many practical applications.
For a more detailed theoretical comparison between BGM and the
approaches of Lebre (2008), and Ko et al. (2007) see Supplementary
Material E. The evaluation of the proposed BGM approach on
synthetic benchmark data and the novel application to two real
biological scenarios provide an encouraging demonstration of the
viability of the proposed BGM method.

7 CONCLUSION

We have proposed a non-linear and non-homogeneous
generalization of the BGe score for Bayesian networks (BGM).
BGM is based on a mixture model, using latent variables to
assign individual measurements to different classes. The practical
inference follows the Bayesian paradigm and samples the graph,
the number of classes and the assignment of latent variables from
the posterior distribution with MCMC, using the allocation sampler
of Nobile and Fearnside (2007) as an alternative to RIMCMC
(Green, 1995). We have evaluated BGM using three criteria:
network reconstruction, statistical significance and agreement with
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Fig. 7. Results of BGM analysis of nine circadian genes in A.thaliana. Two independent experiments under constant light condition were conducted. In
experiment T (T23) A. thaliana was entrained in a 10h:10h (14h:14h) dark/light cycle. (a) and (b) show the estimated posterior probabilities (vertical axis) of
the number of BGM components /C (horizontal axis). (¢) and (d) show the heat map representations of the temporal connectivities, as explained in the caption
of Figure 5. A comparison between the two panels reveals a phase shift of about 2-3 time points (4-6 h.) between the different entrainments 7>¢ and T»g.

intrinsic biological features. In terms of network reconstruction,
we found improved results both for a synthetic network of known
structure (Figs 1 and 2) and for a small real regulatory network
derived from the literature (Fig. 6). For assessing the statistical
significance of the improvement, we computed two scores: Bayes
factors and predictive distributions. We applied these scores to gene
expression time series obtained on different platforms (Agilent
and Affymetrix) for two different systems (viral challenge of
macrophages and circadian rhythms in plants), where BGM tended
to outperform BGe (Tables 1 and 2). Interestingly, we found that
when the improvement obtained with BGM was significant, the
posterior distribution peaked at two latent classes (Figs 4 and 7).
This result provides excellent agreement with intrinsic dichotomies
that we expect to find in these systems, related to the dichotomy
between the healthy and diseased state of the cell, and the diurnal
contrast between light and darkness.
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ABSTRACT

Article: In the article we propose a non-linear and non-homogeneous
generalization of the classical BGe score for Bayesian networks. The
method is based on a mixture model, using latent variables to assign
individual measurements to different classes. The practical inference
follows the Bayesian paradigm and samples the network structure,
the number of classes and the assignment of latent variables from
the posterior distribution with MCMC, using the recently proposed
allocation sampler as an alternative to RIMCMC.

Supplementary material: Due to space restrictions of the article
we provide some additional information as supplementary material.
The implementation details of all applied algorithms are given in
Section 1. Additional figures and tables are provided in Section 2. The
computational complexity of the proposed BGM algorithm is briefly
discussed in Section 3. Finally, in Section 4 we provide a theoretical
comparison with two related approaches by Lebre (2008) and Ko et al.
(2007).

Availability: This supplementary paper on experimental aspects (E)
is available from
http://www.bioss.ac.uk/associates/marco/supplement/E.pdf

A separate supplementary paper on theoretical aspects (T) providing
a more detailed presentation of the mathematical methodology is
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http://www.bioss.ac.uk/associates/marco/supplement/T.pdf

The data sets used in our study are available from
http://www.bioss.ac.uk/associates/marco/supplement/
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1 IMPLEMENTATION DETAILS

{G1,...,Gs00} by sampling every 2000 iterations. For BGM we
set the probability for a structure MCMC move to 0.5. And the
probabilities of the other four move types, which all leave the
graph G unchanged, are set to 0.125. The maximal number of
componentsCar 4 x was set to 10 and we note that this upper limit
was never reached during any MCMC simulation. Equal to the
structure MCMC setting we set the burn-in length to 1,000,000 and

then collected 500 state%[gl, K1, )71], ceey [g500, Kso0, ]_}500]}

each consisting of a graggh, a number of mixture componerts,
and an allocation vectds;.

Following Werhli et al. (2006) we restricted the fan-in to 3
and employed the graph prioP(G) given in Eq. (3) of the
supplementary paper on theoretical aspects (T) when analysing the
synthetic Gaussian data. This guarantees that our results forl
are comparable to those of Werhlial. (2006). But the graph prior
employed by Werhliet al. (2006) yields an intrinsic penalty for
complex networks (see Subsection 1.1 of the supplementary paper
on theoretical aspects (T)). Therefore and as we did not have any
biological prior knowledge about the interactions in the macrophage
and the Arabidopsis domain, the analysis of the gene expression
data was performed with a uniform prior over graphs instead, i.e.
every graph was set to be equally likely a priori. Furthermore, we
decided not to restrict the fan-in for these relatively small domains
with N = 3 (macrophage) and/ = 9 (Arapidopsis) nodes only.

For the time series we did not allow feelf-loops that is we did
not allow that a node can be its own parent node, by restricting the
graph’s neighbourhoods in Eq. (7) of the supplementary paper on
theoretical aspects (T) correspondingly. We decided to exclude self-
loops, as they mainly capture degradation processes which are not
of interest for modelling the regulatory interactions between genes.

We implemented structure MCMC according to the presentations Finally we note that we always performed two independent

given in Madigan and York (1995), and in all experimental

structure MCMC runs for each inference model: BDe, BGe, and

applications we used the following settings: For structure MCMCBGM on every data set. Following Friedman and Koller (2003), we
we set the burn-in length to 1,000,000 and then collected 500 graphs

© Oxford University Press 2008.
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started the structure MCMC simulations with the BDe metric and2 SUPPLEMENTARY FIGURES AND TABLES

the BGe metric from the following initialisations: (i) As uninformed This second section provides additional figures and tables, which
initialization the first structure MCMC run was always seeded by_ que to space limitations - could not be included in the main
an empty graph without any edges. (i) To obtain an 'Uforme‘jcgaper. Most of the captions are self-explanatory, but some further
initialization we always performed a greedy search algorithm anGsyp|anations are given in the text. Figure 1 shows histograms of the
seeded the second structure MCMC run with the most likely graptyosterior probabilities of the number of MCMC inferred mixture
outputted by greedy search. We initialised the proposed BGM;omponents for the synthetic Raf-Mek-Erk pathway data @0t
algorithm with the same graph as the corresponding BGe structurg, < 180 data points. It can be seen that the proposed BGM model
MCMC simulation, and the number of mixture components was Sefends to infer the correct number of mixture components for these
to K = 1 so that all observations were allocated to the same singlgjata sets. There are only 3 out of 16 combination& @ndm for
mixture component at the beginning of the MCMC simulation. We which an incorrect number of components was inferred, namely:
note that BGM inference with the restrictidd = 1 is equivalent (K = 3,m = 60), (K = 5,m = 60), and(K = 5,m = 180).

to structure MCMC inference with the BGe scoring metric. Hence,egpecially for the data sets witir gz = 5 mixture components

a greedy search based on BGe can be seen as a greedy segfChhnears that this inaccuracy of the BGM inference is due to the
based on the BGM model under the constraint that there is exacthy ot that there are only few observations per mixture component,
one mixture component, symbolicallf)¢ = 1. We note that it namelym; = 12 for m = 60 andm; = 36 for m = 180, so that the
may be advisable to initialise the BGM algorithm not only with & posterior probability landscape may be relatively flat around the true
graph found by a greedy search algorithm based on BGe but als@qgylatory relationships. It can be seen from Figure 3 in the main
with an allocation vector outputted by a classification or C|U5terpaperthat the BGM inference on the number of mixture components
algorithm. In our experiments we deliberately avoided to employyecomes more accurate when more data poimis= 480) are
a more informative initialisation for BGM to demonstrate that BGM g 5ilaple.
succeeds in inferring the true relationships - and especially thehe time series of the analysed Interferon regulatory factors (Irfl,
mixture components - independently of the initialisation. Irf2, and Irf3) and scatter plots of the three Irf genes are shown in
Edge posterior probability scatter plots and trace plot diagnostics,;igures 2 and 3. In both plots symbols indicate to which mixture
e.g. of the number of edges of the sampled graphs or of theiggmponent the observations were allocated. Concrete allocations
logarithmic scores, were used to assess convergence. Exce for there obtained by imposing thresholds on the connectivity matrices,
synthetic Raf-Mek-Erk pathway data with = 480 data points  \yhereby for each condition (CMV, IFN and CMV+IFN,) the
(where some MCMC simulations did not converge satisfactorily) Wethreshold was selected such that an allocation consistent with
could see from the edge posterior probabilities that the total MCMGe trends indicated by the corresponding heat matrix (shown in
run-length of 2,000,000 for relatively small domains (betwéer-  Figure 5 of the main paper) was obtained. From the time series
3andN = 11nodes) had led to a satisfactory degree of convergenc@nq the scatter plots it appears that the inferred mixture components
(Pearson correlation coefficients greater than 0.98) for all thregjiffer with respect to the marginal distributions of the three Irf
inference models (BGe, BDe, and BGM). Therefore we report onlygenes; especially in Figure 3 most of the observations allocated to
the results of the empty-seeded runs in the article and point out thghe same component tend to appear as clusters of points in the scatter
we had some convergence problems for the Raf-Mek-Erk pathway)ots.
data withm = 480 data points. The directed edge posterior probability estimates for the Interferon
The hyperparameters of the BGe and BGM models (S€§egulatory factor domain derived from BDe, BGe and BGM

Section 4.1 of the supplementary paper on theoretical aspects (Tiference are given in Table 1. A concrete network prediction can
were set as followsv = 1, @ = N +2, /iy = (0,...,0)" and g gptained from the estimates in Table 1 by imposing a threshold
To = 0.5 - In,v Wherely v is the N-by-N identity matrixandV  and extracting those edges only whose posterior probability estimate
is the number of domain variables. The choicegipand,io ensure  gyceeds the predefined threshold. The AUROC scores resulting
that we are not explicitly biasing our inference to any particularfom the posterior probability estimates in Table 1 - under the
edge (Friedmast al, 2000). They reflect a prior belief where &l assumption that the true regulatory relationships are as follows:
domain variables (genes) are identically and independently standaﬂfQ — Irfl — Irf3 (Damellet al. (1994) and Razat al.
Gaussian distributed (with mean 0 and variance 1). The effectiv?zoos)) - are shown in Figure 6 panel (d) of the main paper.
sample size parametersand o were set to small values, as this The time series of the nine circadian genes in Arabidopsis thaliana
ensures that the weight of the prior distribution (inducedMy  5re shown in Figure 4. Obviously all these genes have a strong
and yio) is as uninformative as possible subject to the constrainbsny circadian rhythm, and interestingly it can also be seen that
that the resulting covariance matrifp (see Section 4.1 of the he |ight:dark entrainment shifts the gene expression profiles. For
supplementary paper on theoretical aspects (T)) is non-singulghost of the circadian genes the dashed lifigs (corresponding
(Geiger and Heckerman, 1994). The prior parameters for the BDg, 14h:14n entrainment) seems to be shifted by approximately 2
model were selected as in Giudici and Castelo (2003) to ensure (Royrs compared to the solid lind% corresponding to 10h:10h
that the prior is uninformative (total prior decision was set to 1) andentrainment). This is in agreement with the BGM inference result
(ii) that equal marginal likelihoods are given to equivalent DAGS. yhere heat maps (see panels (c) and (d) in Figure 7 of the main
See Giudici and Castelo (2003) for further details. paper) also indicate a time shift. Although the time lags differ (4-6

hours instead of 2 hours) it seems that the general trend, i.e. a time

shift, has been captured by the proposed BGM model.

The directed edge posterior probability estimates for the circadian
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genes in Arabidopsis thaliana are given in Tabl&3) and Table 4  the scores on which the proposal distributions depend. We therefore
(T»s). As explained above, concrete network predictions can béwave to resort to classical structure MCMC Madigan and York
obtained from these estimates by imposing an arbitrary threshol{995), which scales up less favourably to larger systems; see the
on these posterior probability estimates. Furthermore, to illustrateliscussions in Grzegorczyk and Husmeier (2008). This problem can
graphically that the light:dark entrainment has an effect on than principle be alleviated by the development of improved MCMC
regulatory relationships, an edge posterior probability estimatesampling schemes — akin to the improvement of MCMC schemes
scatter plotTho versusTss is given in Figure 5. Interestingly, it for conventional Bayesian networks (Grzegorczyk and Husmeier,
appears that the edge posterior probabilities are slightly differen2008) — but the practical implementation needs to be left for future
but do no completely differ; especially the edges with the highestresearch.
posterior probability (around 1) are almost the same for both time
seriesT»o and T>s. The Pearson correlation coefficient is equal
to 0.84. Scatter plots of the directed edge posterior probabilitieé1 GENERAL DISCUSSIONS AND RELATED WORK
obtained by BGM inference versus BGe inference are shown irBayesian networks provide an abstract and simplified representation
Figure 6. It can be seen from the two panels that the posterioof regulatory networks and signalling pathways, which is certainly
probabilities are correlated and do not differ drastically. The Pearsonot appropriate when trying to resolve the detailed structure of
correlations are equal to 0.94%) and 0.93 {%s). a specific pathway. There is a clear trade-off between model
complexity and inference accuracy/computational complexity.

Bayesian networks based on the BDe and BGe scoring metric
3 COMPUTATIONAL COMPLEXITY AND are of a simple form, but allow the marginal likelihood to be

PERFORMANCE OF THE BGM ALGORITHM computed analytically. More complex models along the line we

The computational complexity of the proposed BGM algorithm discuss below sacrifice inference accuracy and resort to measures
depends on the number of network nod€sand the number of that are only reliable in the limit of very large data sets, like
observationsn. The computational complexity related 2 is the  the Laplace approximation or, worse, the Bayesian information
same as for standard Bayesian network inference based on eithefiterion BIC (Schwarz, 1978). Computing marginal likelihoods for
the BGe or the BDe scoring metric. As the number of domain nodegven more accurate models based on differential equations have
N increases, convergence and mixing of the MCMC simulationsbeen attempted, but the computational costs are so high that this
become poorer, and the posterior distributions become more diffus@pproach is restricted to model selection from a very small set
To deal with the diffuse posteriors, the analysis of networks shouldf candidate pathways (Vyshemirsky and Girolami, 2008). We
focus on conserved subnetworks and network features, as discusstherefore hold the view that simpler models, like Bayesian networks
in Friedmanet al. (2000). To improve mixing and convergence using BGe (Geiger and Heckerman, 1994), still play an important
of the MCMC simulations, improved and alternative proposalrole in systems biology.
scheme have been introduced; see Friedman and Koller (2003) andIn principle, one could obtain a model that is more flexible
Grzegorczyk and Husmeier (2008). These aspects have already bethan the proposed BGM method by selecting the components and
investigated in the literature before, and we therefore do not revisiéllocations for each domain variable separately, and originally
them. we intended to implement our BGM model along this line. But
The additional complexity of the proposed BGM algorithm is also unfortunately it turned out that the BGe scoring metric by Geiger
related to the data set size, as each new data point is associatedand Heckerman (1994) is not consistent with a model where each
with a separate allocation variable, that is a new component of theariable has different (independent) breakpoints. E.g. eal.
allocation vector). To investigate how well our model scales up (2007) also apply a mixture of Bayesian networks model to infer
asm increases, we have also run simulations on larger synthetigene regulatory networks from expression data. In fact, the model
Gaussian data sets with = 480 data points, and we found that the of Ko et al. (2007) is more flexible than our BGM model, with
computational costs do not increase substantially. node-specific Gaussian mixture models and, hence, node-specific
The BGM inference results suggest that the number of componentsreakpoints. However, the inference procedure is less sound in
in the heterogeneous data can be learned more accurately than withat the marginal likelihood is intractable. The authors resort to
the smaller data set (see Figure 3 in the main paper and Figure the Bayesian information criterion BIC for model selection, which
in this supplementary paper); however, the network reconstructiois only a good approximation to the marginal likelihood in the
accuracy appears to slightly deteriorate (see Figure 1 and Figure 2 Iimit of very large data sets. In more detail: Our BGM model is
the main paper). This finding might be counter-intuitive, as a largebased on the BGe scoring metric by Geiger and Heckerman (1994)
data set contains more information and should therefore lead to so that the (component-wise) precision matrices of the whole
better performance. However, our finding is consistent with the fachetwork are taken into consideration when computing local scores.
that increased data set sizes lead to likelihood landscapes that aréat is, the BGM model is based on correlations conditional on
more rugged and, hence, result in increased mixing and convergenthe whole domain (network). The approach of Kbal. (2007)
problems; see Figure 7 in Grzegorczyk and Husmeier (2008)decomposes the whole network into local subnetworks (each
When learning conventional Bayesian networks based on the BGeonsisting of a single domain node and its parent nodes only),
and BDe scoring metrics this problem can be addressed, e.g. gnd the local scores are computed from the precision matrices of
improving the MCMC proposal moves, as reported in Grzegorczykthese subnetworks only without taking the dependency structure
and Husmeier (2008). Unfortunately, this approach is not applicablef the complete system, that is, the precision matrix of the whole
to the proposed BGM model, as the reassignment of allocatiometwork, into consideration. The main shortcoming of the approach
variables requires a computationally expensive re-computation obf Ko et al. (2007) is that model selection and inference do not use
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L1l BDe 1 BGe 1 BGM I
CMV CMV CMV
|I’f1 |I’f2 |I’f3 |I’f1 |rf2 Irf3 Irf{ |I‘f2 |I‘f3
Irfy — 0.89 0.04 || Irfy — 1.00 0.83 || Irfy — 1.00 0.84
Irf2 || 0.63 — 0.91 || Irfy || 0.91 — 0.83 || Irfy || 0.86 — 0.40
Irf3 || 0.33 0.18 —- || Irf3 || 0.98 0.51 — || Irf3 || 0.86 0.29 —
IFN,, IFN,, IFN.,
|I’f1 |I’f2 |I’f3 |I’f1 Irf2 |I'f3 |l’f1 |I’f2 |I’f3
Irfq — 0.18 0.67 || Irfy — 0.75 0.79 || Irfy — 0.94 0.79
Irfa || 0.05 — 0.03 || Irfy || 0.34 — 0.80 || Irfo || 0.77 — 0.37
Irfs || 0.73 0.02 —- || Irf3 || 0.67 0.44 —- || Irf3 || 0.75 0.30 —
CMV+IFN,, CMV+IFN,, CMV+IFN,,
|I"f1 Irf2 |I’f3 |rf1 |I’f2 |I’f3 |I’f1 |I'f2 |I'f3
Irfq — 0.02 0.39 || Irfy — 0.77 0.80 || Irfy — 0.80 0.80
Irfg || 0.01 — 0.02 || Irfy || 0.34 — 0.37 || Irfy || 0.44 — 0.37
Irfs || 0.01 0.90 —- || Irf3 || 0.66 0.34 —- || Irf3 || 0.68 0.33 —

Table 1. Macrophage data: Inferred posterior probabilities of directed edges for each combination of experimental condition (CMV, IFNand
CMV+IFN-) and BN inference procedure (BDe, BGe, and BGM). In each@hihe subtables the (i,j)-th cell contains the marginalgrist probability for
an edge from Irfto Irf; (¢,5 =1,...,3).

[ data || CMV IFN, CMV+IFN, ||
BDe [[ 0.67 078 0.00
BGe || 1.00 0.22 0.56
BGM || 1.00 078 0.67

Table2. Macrophage data: AUROC values. For each of the three macrophage data sets the table showB&&Be and BGM AUROC values computed
from the directed edge relation features. The highest AUR@GIGes for each data set are set in bold.

[ genes || LHY CCA1 TOC1 ELF4 ELF3 Gl PRR9 PRR5 PRR3
LHY — 100 053 037 043 035 019 0.15

CCAL || 094 — 048 036 051 040 032 013

TOC1|| 0.08 015 — 028 047 009 028 0.15

ELF4 || 0.16 0.3 018 — 025 004 094 0.19

ELF3 || 0.09 015 008 013 — 004 053 0.15

Gl 099 099 088 048 027 — 033 097

PRR9 || 0.49 026 020 043 026 1.00 — 0.0

PRR5 || 0.07 0.09 042 063 022 099 014 —

PRR3|| 011 015 011 014 024 006 017 0.16

Table 3. Arabidopsis thaliana T data: Inferred posterior probabilities of directed edges. The estimates were obtained with BGM inference for time
series o (10h:10h light:dark entrainment). The (i,j)-th cell comsithe marginal posterior probability of an edge from the gertiee i-th row to the gene in

the j-th column.

| genes || LHY CCA1 TOC1 ELF4 ELF3 GI PRR9 PRR5 PRF?H;

LHY — 1.00 065 071 039 013 044 023 O.
CCAl || 0.92 — 040 039 061 016 035 051 O
TOC1 || 0.12 0.06 — 024 040 010 0.60 018 O.
ELF4 0.09 0.11 0.14 — 0.23 0.05 044 0.08 O
ELF3 0.10 0.08 0.10 0.17 — 055 053 007 O
Gl 1.00 1.00 075 063 030 — 016 089 O.
PRR9 || 0.20 0.42 012 015 024 099 — 090 O.
PRR5 || 0.18 0.13 062 037 024 092 021 — 0.
PRR3 || 0.31 0.12 0.12 017 025 0.04 0.13 0.09

Table 4. Arabidopsis thaliana T»g data: Inferred posterior probabilities of directed edges. The estimates were obtained with BGM inference for time
series bs (14h:14h light:dark entrainment). The (i,j)-th cell comsthe marginal posterior probability of an edge from the gertlee i-th row to the gene in

the j-th column.
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Fig. 1. Synthetic Gaussian data: Histograms of the number of inferred mixture components. For each considered combination of true components
(1 < Krrue < 5) and sample sizen a histogram of the number of BGM-inferred components is shdweach histogram the vertical axes represent
posterior probabilities estimated with MCMC whereby the BGMMC trajectories have been merged across the 5 indepeneplitations. From the
histograms it can be seen that the posterior distributiomefriumber of mixture componenks inferred with BGM tends to peak at the correct number
(indicated by black bars) fo€ < 4. Only for the combinatiorilC = 3 andm = 60 the posterior distribution of the number of inferred compdsaewongly
peaks afC = 2. ForKrryge = 5 (last row) the posterior distribution of the number of ineatrcomponents becomes flat and does not peak at the correct
number of components for. = 60 andm = 180.

a proper Bayesian network scoring metric based on the marginahference uncertainty into account.
likelihood, such as BGe or BDe, but the Bayesian information
criterion (BIC). BIC is known to be a crude approximation to  To understand why the marginal likelihood of the BGe scoring
the proper BGe score, which in many practical applications ismetric (Geiger and Heckerman, 1994) becomes intractable for
strongly over-regularized, especially when the data are sparse¢he variable-specific change point model, consider the following
Additionally, instead of sampling the network structure, the numberexample. Let there be three domain nodésY, and Z and the
of components, and the allocation of the observations from the joinhetwork structuré@” «— X — Z whereby the dependendy «— X
posterior distribution with Markov chain Monte Carlo (MCMC), is modelled by one single component, symbolicaﬁy:(z’) = 1for
as in our work, the approach proposed in &uaal. (2007) is based all observationg, and the dependency — Z is modelled by two
on a heuristic optimisation scheme that fails to take the intrinsiccomponents, symbolicall)l?z(i) € {1, 2} for all observations.

The BGe score of Geiger and Heckerman (1994) is based on the

a1
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Fig. 2. Macrophage data: Gene expression time series of the Interferon regulatory factors. Black symbols: Irf1; grey symbols: Irf2; and white symbols:
Irf3. Concrete allocations were obtained by imposing thotgshon the connectivity matrices, whereby for each condlitie threshold was selected such that
an allocation consistent with the trends indicated by threesponding heat matrix shown in Figure 5 of the main paper wésreed. The different symbols
(triangles, circles, squares) along the time series ingliadtich observations are then assigned to the same mixture cemipby the proposed inference

scheme.
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Fig. 3. Macrophagedata: Scatter plotsfor the macrophage data. The figure shows scatter plots of the collected Irf gene esgioa data. For each condition
(CMV, IFN,, and CMV+IFN,.) there is a column with three panels showing the scattes fidotthe three Irf gene pairs (Irfl vs. Irf2, Irfl vs. Irf3,cirf2 vs.

Irf3). The symbols (rectangles, triangles, and circlesjcatd to which component the data points are allocated acwpto Figure 2. See caption of Figure 2
for more details.
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oh 10h 20h  26h oh 10h 20h  26h oh 10h 20h  26h

oh 10h 20h  26h oh 10h 20h  26h oh 10h 20h  26h
(d) ELF4 (e) ELF3 ® Gl

Oh 10h 20h  26h oh 10h 20h  26h oOh 10h 20h  26h
(g) PRR9 (h) PRR5 (i) PRR3

Fig. 4. Gene expression time series of nine circadian genes in Arabidopsis thaliana. For each of the selected nine circadian clock-regulateégérere
is a plot of two time series. The solid lines refer to the measergs of time serie§»s (14:14 light:dark entrainment) and the dashed lines reféhd¢o
measurements of serids, (10:10 light:dark entrainment). It can be clearly seen tlaaying the entrainment leach to a phase shift of the gene ssipre
profiles. For most of the circadian genes the dashed Tihg)(seems to be shifted by 2h compared to the solid [ifig ).

precision matrix of the whole network (see Eq. (11), Eq. (15), andmultivariate Gaussian distributions.

Eq. (24) in Geiger and Heckerman (1994)). Therefore, when weConsequently, if there are local probability distributions which
compute the local score of nodé conditional onX, we will have  are modelled with more than one component, then the precision
to (i) consider the precision matrix of the whole network domain matrix of the whole domain has to be computed from a mixture
(X, Y, and Z) and (ii) extract the relevant submatrix consisting of multivariate Gaussians. More precisely, it holds: If the
of those rows and columns correspondingXoandY . But since  local probability distribution ofX; is modelled according to the
the relationship betweeX and Z is modelled by a mixture of allocation vectorV;, where V; consists ofc; different mixture

two components and so dependsﬁiﬂ the precision matrix of the components i = 1,...n), then the precision matrix of the
whole network also depends on the allocation vedfer and the  whole domain {i,...X,) consists of up toc = e

precision matrix entries of the submatrix correspondinty tand Z mixture components, and for each of thalifferent realisations
are different for the two components i Especially, this implies  of (VI, e Vn) there is a multivariate Gaussian distribution with a
that the whole networkX, Y, andZ) does not have a multivariate different precision matrix.

Gaussian distribution but must be represented as a mixture of two
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Fig. 6. Arabidopsis thaliana data. Edge posterior probabilities BGe versus BGM. For both time serie§5o (panel (a)) andl»s (panel (b)) the edge
posterior probabilities of BGM (horizontal axis) have bgsotted against the edge posterior probabilities of BGetiga axis). The Pearson correlation
coefficients are equal to 0.94{,) and 0.93 {»g). The coordinates of all points were randomly slightly pesad to visualize clusters of points.

Finally, we note that it has recently come to our attention thatthat is, it is purely data-driven. The breakpoint model applied in
closely related work has been carried out &bke (2008). The main  Lébre (2008) imposes this structure onto the model a priori. While
differences are as follows. The present work has been motivatethis is a useful assumption in most cases, it is more restricted in
by the attempt to find a non-linear generalization of the BGeterms of modelling non-linear distributions. Also, if the regionality
model, using a mixture distribution and the allocation samplerassumption is valid, it is straightforward to include it as prior
The regionality, that is, the segmentation of the time series intcknowledge in our model via a Markovian dependence between
consecutive segments has come out of the inference automaticallye latent variables. In fact, this approach could be regarded as a
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generalization of the breakpoint model, as discussed in Lehrachriedman, N., Linial, M., Nachman, I. and Pe’er, D. (2000) Using Bayesian neswork
(2007). The second difference is thaklre (2008) allows the to analyze expression datdournal of Computational Biology, 601-620.

model to learn different graphs between different breakpoints WhileGeiger, D. and Heckerman, D. (1994) Learning Gaussian netwBrkseedings of the
’ Tenth Conference on Uncertainty in Artificial Intelligenpg. 235-243.

In our approach the graph is constrained to remain unChangeQSiudici, P. and Castelo, R. (2003) Improving Markov chain Monte Carlo mazkech
While this makes the approach othre (2008) more flexible, it for data mining.Machine Learning50, 127—158.

implies that there is no sharing of information between differentGrzegorczyk, M. and Husmeier, D. (2008) Improving the structure MCMC sampler fo
breakpoints. To rephrase this: while the method &bte (2008) sfyzegéar;gsetworks by introducing a new edge reversal mddachine Learning
infers the brea_kpomt _StrUCture from the whole data set, It infer 0, Y., Zhai, C. and Rodriguez-Zas, S. (2007) Inference of gene pathways using
a graph associated with a breakpomt Only from the subset of the Gaussian mixture models. IBIBM International Conference on Bioinformatics
data assigned to the respective segment. Note that time seriesand Biomedicinepp. 362—367. Fremont, CA.

available for contemporary microarray studies are usually limited-ebre, S. (2008Analyse de processus stochastiques pouréaagnique :étude du
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d‘Evry-Val-d‘Essonne.
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the segments, our approach alleviates this problem. In other words, thesis, University of Edinburgh.

by assuming that the graph remains unchanged, and only a”OWinMadigan, ‘D. and Yortk, J. (_1995) Bayesian graphical models for discrete data.
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ABSTRACT

Article: In the article we propose a non-linear and non-homogeneous
generalization of the classical BGe score for Bayesian networks. The
method is based on a mixture model, using latent variables to assign
individual measurements to different classes. The practical inference
follows the Bayesian paradigm and samples the network structure,
the number of classes and the assignment of latent variables from
the posterior distribution with MCMC, using the recently proposed
allocation sampler as an alternative to RIMCMC.

Supplementary material: Due to space restrictions of the article we
provide some additional information as supplementary material. This
supplementary paper on theoretical aspects (T) presents more details
of the mathematical theory. Section 1 gives a detailed overview to
Bayesian network methodology. Section 3 deals with the proposed
BGM model and the corresponding MCMC sampling scheme. The
BGe scoring metric and its straightforward extension to the new BGM
model is discussed in Section 4. Section 5 deals with predictive
probabilities for BGe and BGM. The implementation details of all
applied algorithms and additional figures and tables are available as
a separate supplementary paper on experimental aspects (E).
Availability: This supplementary paper on theoretical aspects (T) is
available from
http://www.bioss.ac.uk/associates/marco/supplement/T.pdf

A separate supplementary paper on experimental aspects (E) with the
implementation details and additional figures and tables is available
from

http://www.bioss.ac.uk/associates/marco/supplement/E.pdf

The data sets used in our study are available from
http://www.bioss.ac.uk/associates/marco/supplement/

Contact: marco@bioss.ac.uk, dirk@bioss.ac.uk

1 BAYESIAN NETWORK METHODOLOGY

This first section of this supplementary paper on theoretical aspects
(T) gives a more detailed introduction to standard Bayesian network
inference. The first subsection describes the Bayesian network

model, the second summarizes the structure MCMC sampling
scheme for Bayesian networks developed by Madigan and York
(1995). Additional information on edge posterior probabilities, ROC
curves and AUROC values is given in the third subsection.

1.1 Bayesian networks

Static Bayesian network¢BNs) are interpretable and flexible
models for representing probabilistic relationships between
interacting variables. At a qualitative level, the graph of a BN
describes the relationships between the domain variables in the
form of conditional independence relations. At a quantitative level,
local relationships between variables are described by conditional
probability distributions. Formally, a BN is defined by a graph
G, a family of conditional probability distribution§&, and their
parameters;, which together specify a joint distribution over the
domain variables.

The graphg of a BN consists of a set oV nodes (variables)
Xi,...,Xn and a set of directed edges between these nodes. The
directed edgeéndicate dependence relations. If there is a directed
edge pointing from nodé&; to nodeX, thenX; is called aparent
(node) of X;, and X; is called achild (node) of X;. The parent
setof nodeX,,, symbolicallyr,, is defined as the set of all parent
nodes ofX,,, that is, the set of nodes from which an edge points
to X,, in G. We say that a nod4’,, is orphanedif it has an empty
parent setr, = (. If a node X, can be reached by following

a path of directed edges starting at nodg, then X, is called a
descendanof X;. The structure of a Bayesian network is defined
to be adirected acyclic graphthat is, a directed graph in which

no node can be its own descendant. Graphically this means that
there are no cycles of directed edges (loops) in DAGs. It is due to
the acyclicity that the joint probability distribution in BNs can be
factorised as follows:

N

S Xn) =[] P(Xalmn) @

n=1

P(X, ..

© Oxford University Press 2008.
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For further details, see Jensen (1996). Thus, DAGs implyDAG G given the data matri:
sets of conditional independence assumptions for BNs, and so
factorisations of the joint probability distribution in which each

node depends on its parent nodes only. But more than one DAG
can imply exactly the same set of conditional independencies,

and if two DAGs assert the same set of conditional independencg,herebyp(g) (G € Q) is the prior probability over the spage
assumptions, those DAGs are said tosbeivalent This relation of  of il possible DAGs over the domaikiy, ..., X . P(D|G) is the
graph equivalence imposes a seegfiivalence classes/er DAGS.  marginal likelihood, that is the probability of the graghgiven the
The DAGs within an equivalence class have the same underlyingata matrixD. A commonly used graph priaP(G) (G € Q) is a

undirected graph, but may disagree on the direction of some ofiniform distribution ovef2. Another graph prior is given by:
the edges. (Verma and Pearl, 1990) prove that two DAGs are

equivalent if and only if they have the sarskeletonand the same N 1

set ofv-structures The skeleton of a directed acyclic graph (DAG) P(G) = 1 H ( it ) (3)

is defined as the undirected graph which results from ignoring - |7

all edge directions. And a v-structure denotes a configuration

X; — X, < X, of two directed edges converging on the samewhereIlI is a normalization constant, and,| is the cardinality
nodeX,, without an edge betweek,; and X, (Chickering, 1995). of the parent setr,,. The graph prior given in Eq. (3) implicitly
Although Bayesian networks (BNs) are based on DAGs, it isassumes that the cardinalities of the parent sets for each domain
important to note that not all directed edges in a BN can benode are uniformly distributed and, hence, includes a penalty for
interpreted causally. Like a BN,@usal networks mathematically  complex networks (Friedman and Koller, 2003).

represented by a DAG. However, the edges in a causal network havihere are two major stochastic models for which certain regularity
a stricter interpretation: the parents of a variable are its immediateonditions can be satisfied, so that a closed-form solution can be
causes. In the presentation of a causal network it is meaningfulerived for the likelihoodP(D|G) by analytical integration. See

to make thecausal Markov assumptio(Pearl, 2000): Given the Geiger and Heckerman (1994) and Heckerman (1999) for further
values of a variable’s immediate causes, it is independent of itsletails. The posterior probability’(G|D) (see Eq. (2)) has a
earlier causes. Under this assumption, a causal network can bwodular form:

interpreted as a BN in that it satisfies the corresponding Markov

independencies. However, the reverse does not hold. 1 N

The probability models for BNs we will consider in this paper lead P(@ID) = 7. H exp(¥[Xn, 7| D) )

to the same scores for equivalent DAGs, so that only equivalence n=1

classes can be learnt from data. Chickering (1995) shows tha}_t‘
equivalence classes of DAGs can be uniquely represented usinsgfre’ Z

completed partially directed acyclic grapi€PDAGs). A CPDAG ores that are computed from the dataand depend on the

contains the same skeleton as the original DAG, but possesses bo?ﬁregt f;etzrnblmtpr)llled thrlougk:jthe bDAlfglt TheJOfaITEco:eg/;[.} .
directed and undirected edges. Every directed edige-> X, of a are defined by the employed probabllity model. - The two major

CPDAG denotes that all DAGs of this class contain this edge, Whileis.’:](;;hraét: g?ﬂelﬁq’ogﬁdm% t; so?rﬁ:ﬁ(\j/\_/f-:grtsg!:ttpbn’t-grr,ea? t:;e
every undirected edg&; — X; in this CPDAG-representation ' uss| Wi ! IStrbut

denotes that some DAGs contain the directed edge— X, thwuggt.e T:IIotr (BGe;Brgoqel),daTd /i) the mgltlnon;lﬁi dlstrlbu('jnoln
while others contain the oppositely orientated edge «— Xj. with a Dirichlet prior (BDe-model). A comparison of these models

An algorithm that takes as input a DAG, and outputs the CPDAG'; t?e (r:lc:jnitsx;r?fdrﬁqverie an(')%%e”?r? t?](ianerrt(iagiulsvtor?/ networ:ksncan

representation of the equivalence class to which that DAG belongs € fou edmaget a ( )- S articie we focus on a

can be found in (Chickering, 2002) non-homogeneous extension of the BGe-model. See Geiger and
' ' Heckerman (1994) or Grzegorczgk al. (2008) for more detailed

presentations of the BGe model for Bayesian networks.

_P@G.D) _ P(D|9)-P(©)
POPY= "2y = 5, PG - PGy @

. is a normalization factor, ang[X,,r,|D] are local

Stochastic models for Bayesian networks (Friedmetn al,
2000) specify the distributional fornd" and the parameterg of
the local probability distributionsP (X, |m.) (n = 1,...,N).
They assert a distribution to each domain nak¥lg conditional
on its parent setr,,, whereby the parent sets are implied through
the underlying DAG. The local probability distributions together
specify the joint probability distribution of all domain variables
P(Xi,...,Xn) (see Eg. (1)). Consequently, given ddbathese
parametric models can be used to score DAGwIth respect to
their posterior probabilitie$*(G|D, F, q). We assume that the data
matrix D is of sizeN-by-m and each of the: columns corresponds
to an independent realisation of the doma, ..., Xn. D;; is
the j-th observation of the-th domain nodeX;.

Neglecting the family of probability distributiong’ and their N

parameters;, we have for the posterior probabilit#(G|D) of a P(Xity o Xnv) = H P(Xont|ne1) )

n=1

When instead ofm independent observations for the domain
X1,..., X, time series datd X1 ,¢,... Xn,¢)¢=1,...,m have been
collected dynamic Bayesian networkBBNs) can be employed. In
DBNs each edge corresponds to an interaction with a time delay
7; e.g. forr = 1 an edge pointing fronX; to X; means that the
realisationz; ¢ of X; at time pointt is influenced by the realisation
x;,+—1 Of X; atthe previous time poirt-1. In DBNs parameters are
tied such that the transition probabilities between time slicesl
andt are the same for atl that is, DBNs are homogeneous Markov
models. Because of the time delay of interactions the acyclicty of
the underlying graply is not required, and Eq. (1) is replaced by:
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wherer,, .1 denotes the parent set &, at the previous time point  Under ergodicity, that is a sufficient condition for the Markov chain
t — 1. Accordingly, the DBN counterpart of Eq. (4) is given by: {G.} to converge, the posterior distributidt(G|D) is the stationary

distribution:
P(G|D) = — ex Xty Tni—1|D 6
| Z. nl_Il p t t—1] D (6) ng ZT glg ng) (11)
We note that no realisations for the potential parent nodes of the
domain variablesY; ; at the first time point{ = 1) are available. The structure MCMC sampling scheme for static Bayesian
Consequently the first observations faf 1,..., X1, at time networks (BNs) can be straightforwardly modified in order to

pointt = 1 cannot be included when computing likelihoods for sample dynamic Bayesian networks (DBNs). For (static) BNs the
DBNs. That is, for time series of length the effective sample size neighbourhoodf a DAG G in Eq. (7) is defined as the collection
that can be used for the computation of DBN likelihoods is equal toof all DAGs that can be reached frog by deletion, addition

m — 1. or reversal of one single edge. For DBNs we define that the
. . neighbourhood of a (not-necessarily acyclic) directed graph is the
12 StructureMCMC sampling of Bayesian networks collection of all (not necessarily acyclic) directed graphs that can be

In the context of static Bayesian networks (BNs) Different Markov reached frong either by deletion or by addition of one single edge.
chain Monte Carlo (MCMC) methods have been proposed for
sampling directed acyclic graphs (DAGS) from the posterior A reasonable approach adopted in most Bayesian network
distribution P(G|D) (Madigan and York (1995), Friedman and applications is to impose a limit on the cardinality of the parent
Koller (2003), or Grzegorczyk and Husmeier (2008). The structuresets. This limit is referred to as ttian-in. The practical advantage
MCMC approach of Madigan and York (1995) generates a samplef the restriction on the maximum number of edges converging
of DAGs Gy, ..., Gr from the posterior distribution by a Metropolis on a node is a reduction of the computational complexity, which
Hastings sampler in the space of DAGs. Given a DG in a improves the convergence. Fan-in restrictions can be justified in the
first step a new DAG; 11 is proposed with the following proposal context of biological expression data, as many experimental results
probability Q(G: +1]G:): have shown that the expression of a gene is usually controlled by
1 Gisr € N(G) a comparatively small number of active regulator genes, while on
Q(Gir1|Gi) = { NG Tt ‘ } ) the other hand regulator-genes seem to be nearly unrestricted in the
0 ,Gir1 € N(Gi) number of genes they regulate. The imputation of a fan-in restriction
where A/(G:) denotes theneighbourhoodof G;, that is, the leads to a_further red_uction of the graph’s neighbourhoods: Graphs
collection of all DAGs that can be reached fraga by deletion, Fhat contain nodes with too many parents, thaF is more than the fan-
addition or reversal of one single edge of the current grgph in value, have to be removed from the respective neighbourhoods.
and |N(G;)| is the cardinality of this collection. We note that the
new graphg;,1 has to be acyclic, so it has to be checked which
edges can be added t& and which edges can be reversed in 13 PpPosterior probability of edges and AUROC
G; without violating the acyclicity-constraint. In the Metropolis diagnostics

Hastings algorithm the proposed gra@gh;: is accepted with the
acceptance probabilityd (Gi+1|G:) =min{1, R(G;11|G:)}, where Structure MCMC can be usod to generate a graph safhple, Q..T.,
and usually the next step is to compute posterior probabilities of

R(Gini|G)) = P(Gi41|D) Q(Gi|Gi+1) ®) edges. We focus onndirected edgefor independent data (BNs)
YT TPGID)  Q(Gisa|Gi) and directed edgedor time-dependent (DBN) data. There is an
_ _ _ directed edge betweeX; and X; (i < j) in G if it possesses
P(D|Gin1) - P(Gir1) _IN(Gi)l o y ;
P(D|G:) - P(G) : N (Gort)| either the edgeX; — X, or the edgeX; «— X, and there is a

directed edge fronX; to X; (i # j) in the graphg if it possesses
the edgeX; — Xj;. An estimator for the posterior probabilities
while the Markov chain is left unchanged, symbolicaly.1 := G;, of an edgeF’ is given by the fraction of graphs in the sample that
if the new graphg; ;1 is not accepted{G, } is then a Markov chain  contain the edge of interest:
in the space of DAGs whose Markov transition kerfi¢lG|G) for a

move fromg to G is given by the product of the proposal probability T
and the acceptance probability Gr# G: P(FD) = Z (12)
7(G19) = Q(G19) - A(GI9) 9) o .
where Ir is a binary indicator variable over the space of graphs,
and ~ ~ which is1 if the edgeF' is present in the DAG, an@ otherwise.
TGlG)=1-— Z Q(GIG) - A(G|9). When the true graph or at least a gold-standard graph for the
GeN(9) domain is known, the concept &OC curvesand AUROC values
Per construction it is guaranteed that the Markov transition kernef@n be used to evaluate the network reconstruction accuracy of the
satisfies the equation of detailed balance: Bayesian network inference. We assume that= 1 indicates that

there is an (directed/undirected) edge betw&emand.X; in the true
- (10) graph, whilee;; = 0 indicates that this edge is not given in the true
P(G|D) T(g\é) graph. Bayesian network inference outputs a posterior probability
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estimateP(TV;ID) for each edge;;. space:
Let e(8) = {ei]-\P(/FIWD) > 9} denote the set of all edges

whose posterior probabilitiy estimates exceed a given threshold

0. Given @ the number of true positive (TP), false positive (FP),

and false negative (FN) edge (relation) feature findings can be = /P(D@ G)P(q19)dq (7
counted, and theensitivityS = TP/(T'P + FN) and theinverse i

specificityl = FP/(TN + FP) can be computed. But ratherthan ~ @nd @ closed-form solution for the BDe and BGe model
selecting an arbitrary value for the threshé)dhis procedure canbe ¢@n be derived under two fairly weak assumptiofarameter
repeated for several values fnd the ensuing sensitivities can be iNdependencemeans that the prior distributiod*(g]G) of the
plotted against the corresponding inverse specificities. This gives tHa"Known parameterg” can be factorised into a product of
receiver operator charcteristiROC) curve. A quantitative measure SUPS€ts of parameteqs,) each associated with a local probability
for the learning performance can be obtained by integrating the ROEiStribution: ~

curve so as to obtain the area under the ROC curve, which is usually P(§1G) = H P(Gm)|G) (18)
referred to as AUROCvalue. We note that larger AURQGalues ol

indicate a better learning perform.ance, whereby 1is an upper ”mi&vhereby i) consists of those parameters required for
and corresponds to a perfect estimator, while 0.5 corresponds to&arameterising the local probability distributiof, given graprg.
random estimator. S Parameter modularityneans that the probability of the parameter
An alternative and more intuitive criteria is given B P|F P = 5) subset, in the local probability distributiod?(g;,,,|G) depends on

counts: For each MCMC output a threshaldis imposed on the o parent variables,, of X,, in G only. Thatis, forn =1,..., N
inferred edge posterior probabilities such that 5 false positive (FP} nolds:

edges are extracted and the corresponding number of true positive P(Gn)|G) = P(Gimy|7n) (19)
(TP) edges, symbolicallyT’ P|FP = 5), exceeding the threshold
1, is counted (Werhlet al., 2006).

P(DI9)

/ P(D, @1G)dq (16)

Let D(n, .) denote the observations of theth domain nodeX,
in the dateD, andD(m,, .) denotes the observations &f,’s parent
nodesm,, in D. Under the assumption of parameter independence

2 THE GAUSSIAN MIXTURE APPROACH FOR the likelihood can be factorised according to Eq. (1):
BAYESIAN NETWORKS N

In this section we motivate the proposed Gaussian mixture approach P(D|G, q) = H P(Xyn =D(n,.)|mn = D(Tn,.), qn)) (20)

for Bayesian networks (BGM). The BGM model is based on the n=1

idea that the joint probability distributio (X1, ..., Xx~) can be Inserting Eq. (18), Eq. (19), and Eq. (20) in Eq. (16) yields:

replaced by a mixture distribution:
P(D|g) =

K
= N
P(X1,...,Xn|K,q) = kz MNeP(X1,..., Xn|G)  (13) 11 /P(Xn = D(n, ) Gn> T = Dy ) P(dimy 170 )d )
=1 ne1

This can be straightforwardly extended to the BGM model

whose numbTer of mixture componens mixture weightsA\ = when the assumptions of parameter independence and parameter
(A1, A) aan mixture components’ parameters in the vectormodularity are extended with respect to a mixture model approach.
d=(ql,...,q}) areregarded as unknowns. Fork = 1,...K it can be assumed that:
The local probability distribution® (X, |7,,) in Eq. (1) can then N
be factorised accordingly, and we obtain: . .
i P(G19) = [ P(G.)19) (21)
n=1

K N
P(X1,..., XnIK, @) =Y M [[ P(Xalmn, @) (14)  and
k=1 n=1 P(Gr,(m)1G) = P(Gr,(n)|mn) (22)

) . ) where ¢ (,) consists of those parameters required for
Moreover, we assume that independent priors can be assigned tOtBSrameterising the local probability distribution of, given

parameters i a graphg, in which the parent set oX,, is 7, in the k-th mixture

distribution.
- K R For the Gaussian mixture model the likelihood then factorises as
P(qIK,¢) = [ [ P(akléx) (15)  follows:
k=1 K N
P(DIG,K,d) =Y M [[ P(Xn =D(n, )lmwn =D(wn,.), @,n))
where ¢, is the set of hyperparameters for the prior distribution k=1 n=1 23)
of;he paim%terak of the k-th mixture component, ang = what in turn can be interpreted as a mixture of Bayesian network
(¢1 ,~~~7<Z5;c> . BGe likelihoods (see Eq. (20)) wheie = (qp (), .- .7(ka7(n))T

In classical Bayesian network approaches the marginal likelihoods the parameter vector associated with kiath Bayesian network
of a data seD given a graphy is the integral over the parameter model in the mixture distribution.
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3 GAUSSIAN MIXTURE ALLOCATION MCMC Dir(a,...,ax) with hyperparametersl = (ai,...ax)” so
INFERENCE that the posterior probability of conditional onK is given by

The third section of this supplementary paper on theoretica??" (M1 + a1, ..., e + ax):

aspects (T) deals with the novel non-linear and non-homogeneous

generalization of the classical BGe score for Bayesian networks. PYVIK) = /dﬁP(]} =7k, p) - P(p)

Gaussian mixture allocation MCMC inference (BGM) is based

on a mixture model, using latent variables to assign individual T'(co) K T(an + 1)

measurements (observations of the domian) to different classes = T(ao +m) H T(an)

(mixture components). The practical inference follows the Bayesian k=1

paradigm and samples the graph structure, the number of Class\?v?]erea ot 4o
and the assignment of latent variables from the posterior distribution O ST e

with MCMC, using the recently proposed allocation sampler
(Nobile and Fearnside, 2007) as an alternative to RIMCMC. In otential parent nodes of the variables a time poidtnd we know

the first subsection we present the new BGM model. Subsequentl . : . .

. ) . . hat the effective number of observations (sample size) for dynamic
in the second subsection we describe the BGM sampling sche . . ;
. [, . . . . . ayesian networks is therefore equabto— 1, as no observations
in detail. Finally, in the third subsection we discuss all different

MCMC move types in detail for the potent_ial parent n_odes_of_ the_domain_ variables at time p_oint
' t = 1 are available. Bearing this in mind, we interpret the allocation
3.1 Gaussian mixture Bayesian network model vectorV for DBNs as follows: Fort = 1,...,m — 1, V(t) = k
means that the domain variabl&s ;. at time pointt + 1, whose
potential parent nodes are the domain variables, ..., X, at
time point¢, are allocated to thé-th mixture component. From
this point of view them-th (last) entry of the allocation vector is
redundant and can be excluded from all operations that may change
its value. Therefore, for the remainder of this paper we assume that
the length of the allocation vectods are decreased by In(— 1
instead ofm) when they correspond to dynamic Bayesian network

We know that in DBNs the variables at time point- 1 are

We assume that we have either independent and identically
distributed (iid) observations (BNs) omn time dependent
observations with a homogeneous first-order Markovian
dependence structure (DBNSs) for the variabkés, ... Xn. This
gives a data set matrix of sizé-by-m whereD_; (j =1,...,m)

is the j-th observation of théV nodes. The allocation vectot of
size'm defines an allocation of thex observations tdC mixture
componentsY(j) = k means that thg-th observation is allocated
to thek-th component’D(‘}’k) denotes the data subset consisting of (DBN) models.
all observations allocated to tieth component by (1 < k < K).

We assume that the joint posterior probability of a graphan

allocation vecton}, and IC mixture components can be factorised

as follows: 32 MCMC inference
. P(g,ﬁ,lC,D) ., The new Gaussian mixture Allocation MCMC sampling scheme
PG, V.K|D) = — Py = P(G,V,.K,D) (24)  (BGM) generates a sample from the joint posterior distribution

~ ~ P(G, K, V|D) given in Eq. (24) and comprises five different types
=P(K)-P(VIK)-P(G) - P(D|G,V,K) of moves in the state-spadé, K, V). The first move type is a
classical structure MCMC single edge operation on the gi@ph
where o while the number of componenis and the allocation vector are
i _ (V,k) left unchanged. According to Eq. (7) a new graplis proposed,
P(DIg,V.K) = ;}:[1 P(D 19) (25) and the new statfg, I, 17} is accepted according to Eq (8) where
L the likelihood termsP(D|G) in Eqg. (8) have to be replaced by
In Eq. (25) the likelihood termg>(DV¥)|G) for the data subsets P(D|g, K, V) terms given in Eq. (25). The four other move types
DWYR) given the same grapB can be computed independently are adapted fﬁrom Nobile and Fearnside (2007) and operalﬁ on
with the BGe scoring metric (Geiger and Heckerman, 1994). Ifor on K and V. If there areC > 2 mixture components, then
no observation is allocated to teth componentp“}*’“) = 0), moves of the type M1 and M2 can be used to re-allocate some

P(D(v,k>|g) is equal to 1. Following Nobile and Fearnside (2007) observations from one componehtto another onek. That is,

we assume as prior okl the Poisson distribution with parameter & NéW allocation vectob’™ is proposed whileg and K are left
A = 1 restricted tol < K < Karax and that the probability unchanged. The EA move type changésnd). An ejection EA

distribution of the allocation vectd? conditional onkC is given by: ~ MOVE Proposes to increase the number of mixture components by
1 and simultaneously tries to re-allocate some observations to fill

K the new component. More precisely, it randomly selects a mixture
PV =0K,p) = H pp (26)  component and tries to re-allocate some of its observations to the

k=1 newly proposed componerif 4 1 while G is left unchanged.
Absorption EA moves are complementary to ejection EA moves and

wherep = (p1,...,px) with Zk’czl pr = 1 are the non-negative decrease the number of mixture components.lyn EA absorption
mixture weights, and; is the number of observations allocated move randomly selects two mixture components and deletes one
to the k-th mixture component b)ﬁ. The prior on the mixture of them after having re-allocated all its observations to the other
weightsg = (p1,...,px)" is chosen to be a Dirichlet distribution component. The acceptance probabilities for M1, M2, EA ejection,
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and EA absorption moves are of the same functional form: whereby it can be shown that the ratio on the right is equal to:
e {1 POVIK")  P(DIG.V'.K*) QUFV) P(K*) P(i = B)IK) - T, s POOVOFP1G)
¥ V|V P(K Blie k) 4
POVIK)  P(DIG,V,K) Q) Pl >(27) Sk { PO = B - [T e e POOPGR01G) )

where the likelihood terms have been specified in Eq. (25), th
proposal probabilities)(.|.) depend on the move type (M1, M2,
EA), andK* = K for M1 and M2 moves, anfl* ¢ £ — 1, + 1

for EA moves. Finally, the Gibbs move re-allocates only one single

observation by sampling its new allocation from the coresspondin® 3.3 The M1 Move on the allocation vectdr If there is one

%See Nobile and Fearnside (2007) for further details on this
systematic sweep Gibbs move.

Boltzmann distribution (see Nobile and Fearnside (2007)) whilecomponent only, symbolicall)c = 1, select a different type
leaving/C andy unchanged. The next subsection discusses all BGMyf move. Otherwise randomly select two mixture componénts
moves in detail. and k among thekC available. Draw a random numbgrfrom a

Beta distribution whose parameters are equal to the corresponding
3.3 Movesfor BGM in detail hyperparameters;, and o of the Dirichlet prior on the mixture
Before the MCMC simulation is started, probabilitigs (i = weights. Re-allocating each observation currently belonging to the
1,...,5) with p1 +...+ps = 1 must be predefined with which one &-th or k-th component to componerk with probability 5 or

of these move types (structure, M1, M2, Gibbs, EA) is selected. Théo component: with probability 1 — p gives the new allocation
classical structure MCMC move type (Madigan and York (1995))vectorV*. Nobile and Fearnside (2007) show that for M1 proposal
changes the graply and leaves the number of componets  Probabilities holds:

and the allocation vectoy unchanged. The other move types are L

immediately adopted from Nobile and Fearnside (2007). QU V) { POV*|K) }

V") P(VIK)

%
3.3.1 Structure MCMC Move on the gragh The first move QWY
type is a standard structure MCMC move in the graph space. It . .
proposes to change the current graptby adding, deleting or so that the corresponding terms in Eq. (27) cancel out. Furthermore,

as the number of componeniS is not changed either, all that
reversing a single edge as explained in detail in Section 1. The DIG.V* K)

remains to compute is the likelihood rati&21%V"X)  For M1
acceptance probability for a move froﬁ@,lc,v} to [Q,IC,V} is

P(D|G,V,K)
given by: A =min{1, R} where moves all except thé-th and thek-th factor cancel out from the

ratio when the likelihoods are factorised according to Eq. (25).
5 = 5 Hence the acceptance probability for an M1 move frighC, V]

R = ) (28)  to[G, Kk, V*]is given by:

K) - POVIK) - P(G) - P(DIG,V,K)  Q(GI9) 4 —min {1, POV P10 POV PG|
y g " P(DFNIG) | P(DTRG)

© Lo
) 11 P(DYPIG) N9 See Nobile and Fearnside (2007) for further details on the M1 move.
) P(DV:R)|

3.3.4 The M2 Move on the allocation vectdr If there is one

whereQ(g|G) andQ(G|G) are the proposal probabilities for moves component only, symbolicallyjC = 1, select a different move
from G to G and vice-versa, V' (G) and () are the sets of type. Otherwise randomly select two mixture componenisnd

neighbour graphs of andg, and Eq. (25) was used for factorising k¥ among thefC available and then randomly select a group of
the IikelihoodsP(D<‘7*’“)|g~) andP(D<v,k)|g)_ observations allocated to componéntand attempt to re-allocate

them to componenk. If the k-th component is empty the move
3.3.2 Gibbs Move on the allocation vecttr If there is one fails outright. Otherwise draw a random numhefrom a uniform
component on|y, symbo”ca”j(: = 1, select another move type. distribution onl,..., ng whereny, is the number of observation
Otherwise randomly select an observatiaamong then available ~ allocated to thes-th component. Subsequently, randomly setect
and determine to which componen(l < k < K) this observation ~ 0bservations from the, in component: and allocate the selected

currently belongs. For each mixture componént= 1,...,K observations to componehto obtain the new allocation vectdy.
replace thei-th entry of the allocation vectoy by componemfc As K is not changed and all except theh and the:-th factor cancel
to obtaim?(i — /;) (k = 1,...,K). We note thaﬂ}(i — k)is out from the ratio when the likelihoods are factorised according to

equal to the current allocation vectbt Subsequently, sample the Ed. (25), the acceptance probability for an M2 move frigh, %
new allocation vectov™ from the full conditional distribution: For  t0[G, K, V"] is given by:
k=1,...,K:

A P(G, V(i — k),K|D)

POV =V(i —k)): - 29 A=
V=V = e 0 i — ke kD)

{1 POFIK) TLewi POV719) Qo?*n”} (1)
| POIK)  TLiers POUIIG) QU
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Nobile and Fearnside (2007) show that for the proposal The absorption move

probability ratio holds: Randomly select a mixture componént(l < k& < K) as the
.o absorbing component and another comporerit < k < K
QUV'V)  m ng! - ng! (32) with & # k) as the disappearing component. Re-allocate all

observations currently allocated to the disappearing compdnent
by V to componentk to obtain the new allocation vectar*.
wheren,, andn;, are the numbers of observations allocated to theThen delete the (empty) componénto obtain the new number of
k-th andk-th component by7. See Nobile and Fearnside (2007) for componentsC* = K — 1.

Q) mnptu (e —uw)!l (nj +u)!

further details on the M2 move. Nobile and Fearnside (2007) show that the acceptance probability

3.3.5 EA (ejection/absorption) moves on the number offor an{lEA]\%a}b;ﬁrep;t;on move frofg, K, V] to[G, K7, V7] is given by

components/C and the allocation vectorV: If there is only o

one component, symbolicallg = 1, then an ejection move has to . S S i .
pPV'IK") P(DIG, V", K) QUV',KMIV,K]) P(K")

be performed. If the maximal number of components is currentlyr —

4|

given, symbolically = Kirax, then an absorption move has to POVIK)  P(DIG,V,K)  Q(IV, K|V, K*]) P(K)
be performed. Ifl < £ < K ax then perform an ejection move
with probability 0.5 and otherwise an absorption move. andC” = K€ — 1.
Nobile and Fearnside (2007) show that for the ratio of the
The gjection move proposal probabilities holds:
Randomly select a mixture componeht(1 < k < K) as . R
the ejecting component. Make a draws from a Beta(a,a) Q" ’CH[V:’CD —pa ['(2a) T(a+ng)(a+nk)
distribution and re-allocate each observation currently allocated to ~ Q([V, K]|[V*, K*]) I'(a)? I'(2a + ny)

component in the vector) with probabilitypx to a new (rejected)

component with labekl + 1. Subsequently swap the labels of the where nj, is the number of observations allocated to thth
new (rejected) mixture componekit+ 1 with a randomly choosen ~component inV*, n; and n; are the numbers of observations
mixture component labdl including the labek + 1 of the ejected  allocated to thek-th and k-th component byV. Furthermore, it
componentitself{ < k < K+1) to obtain the allocation vecta#*. holds:pa = 0.5if K = Kpax,pa =2if K =2, andps = 1
Nobile and Fearnside (2007) show that the acceptance probabilitytherwise. For the likelihood ratio holds:

for an EA ejection move fronig, K, V] to [G, K*, V*] is given by B

A = {1, R} where: P(D|G,V*,K*) P(DY"R|G)

P(DIG,V,K)  P(DYR|G)- P(DVR|G)

_ POFIKY) P(DIG,V*,K") Q(V*,KM|V,K])  P(KY)
PVIK)  P(DIG,V,K) Q(V,K]|[V*,k*]) P(K) 4 BGE SCORE AND EXTENSION TO BGM

This section deals with the standard BGe scoring metric (Bayesian
metric for Gaussian networks having score equivalence) for
Bayesian networks. The first subsection focuses on BGe for
static data (independent observations of the domain) and dynamic
(D; ]H K)) I'(a)? T'(2a + ny) data (timg series of the .dom.ain).. The formula for the closed-
([77 ]Hﬁ Q) =PE" T'(24) : T(a + n3)C(a £ n7) form solution of the marginal likelihood are given. In the second
“ k subsection we explain how to expand BGe to the proposed BGM
model and provide all necessary formula.

andK* =K+ 1.
Nobile and Fearnside (2007) show that for the ratio of the
proposal probabilities holds:

wherew = kif k # k, andw = K + 1if k = k, ny is the
number of observations allocated to the¢h component iV, n;, 41 BGe
andn;, are the numbers of observations allocated to«thth and

J-th component by*. Furthermore, it holdsps = 0.5 if K = 1 Given a data seP with m observations of the domai, ..., X,
P : ’ B = e ) let D;,; denote thej-th observation of thé-th domain nodeX;,
pe = 2if K = Kmax — 1, andpg = 1 otherwise. For the T ) .
likelihood ratio holds: and letD.; = (Di,,...,Dn,;)" denote thej-th observation
' vector of the domain. The BGe model (Geiger and Heckerman
P(DIG P K*) P(D(V*,k)‘g) . P(D(‘j*'w)|g) (1994)) assumes that the set of observation vecfors (; =
— = = 1,...,m) is arandom sample from a multivariate Gaussian normal

% V,k
P(DIG,V,K) P(D™M|G) distribution NV (j7,3) with an unknown mean vectofi and an

unknown covariance matrix. The prior joint distribution ofi and
W = ¥~ is supposed to be the normal-Wishart distribution, that is,
the conditional distribution ofi givenW is N (jio, v - W) such that
v > 0, and the marginal distribution d¥" is a Wishart distribution
I'(2a) T(a+nk) with @« > N + 1 degrees of freedom and precision matfi,
T(a) T(2a+np) =0.1 denotedW(«, Tp). The conditionae > N + 1 ensures that the
second moments of the posterior distribution are finite (see also
whereby a lookup table was used in our BGM implementation. Sedq. (26) in Geiger and Heckerman (1994)). Geiger and Heckerman
Nobile and Fearnside (2007) for further details. (1994) show that the likelihood (scor€)D|G) of the dataD given

wherew = k if k # k, andw = K + 1 if k = k. Following Nobile
and Fearnside (2007) the paramet@f the Beta(a, a) distribution
can be selected by numerically solving the following equation:
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a graphg can then - under fairly weak conditions - be computed asconsideration in the context of BGe by building new matrices from

follows: We define:

vm - N =T
Tp := T —D - D
D o+ Sp + Py m(,uo ) (Fo ) (33)
where .
-1 > D, (34)
m
j=1
is the mean of then observation vectors and
Sp = Z(qu - 5) (D.;— D)T (35)

Furthermore, we set:

{2a~n/2 -

c(n,a) =

n Sy -1
A(n—l)/4.HF(O[+21Z)} (36)

=1

the original data matrix of siz&7-by-m:

D11 D2 Dim-1 Dim
D21 Dap Dam-1 Daom

D= (38)
Dy Dny2 DN,m-1 Dn,m

’

We build the following matrices of sizgV + 1)-by-(m — 1):

Dix D D1,m—1
Dy1 Dap Do m—1
by =| (39)
Dn,1 Dnyo2 DNm—1
Di2> Dis Dim

i =1,...,N. Thatis, we obtairD(i) by deleting the last column
of D and adding the rowWD; s, ..., D;m), i.e. thei-th row of D

The likelihood can then be computed as follows (Geiger andSMifted leftwards by 1, as theV + 1)'th row. For convenience, we

Heckerman (1994)):

N
P(D|9) :H

where X; is thei-th domain variabler; is the parent set of the
th domain variableX; in the graphg, D¥+™:} andD1™:} are the

P03 |Gr ({Xi, mi})
P(Dri}|Gr(mi))

@37

identify the (N + 1)-th row with a new domain variabl& n ;1.
Finally, we replace Eq. (37) by:

ﬁ PO XN 7} G ({ Xy i1, mi})

P(DIG) = P(D(i)}[Gr (7))

(40)

1=1

4.2 BGM

data submatrices corresponding to the observations for the domaifhe results of the last subsection can be straightforwardly extended

variables in the setgX;, m; } and{; } only, andGr ({ X;, m; }) and
Gr(m;) correspond to so callefulll graphsfor the domain subsets

to the BGM model by factorising the likelihodtiz s (D|G, V, K)
according to Eq. (25). The (static) BGM counterpart of Eq. (37) is

{X;,m} and {m;}, that is, to subgraphs with maximal number given by:
of edges so that the subgraphs do not impose any independency

restrictions on the variables.

The likelihood of the data subs&{} c D corresponding to the
m observations of the:-dimensional subse$ C {Xi,...,Xn}
of the N domain variables given a full grapfi=(.S) for the sub-

domain S can be computed as follows (Geiger and Heckerman

(1994)):

c(n, )

n-m v n/2
P(DS|Gr(S)) = (2m)" '{Hm} " e(n,at m)
- det

rx+7n

det(Ty) % - det(T5) 2

(V k), { X, 7”}\QF {Xz,m
P(DV R A7} G (7))

K N
P(D|G,V,K) = HH D @)

whereD(V:):S is the data subset dp which is restricted to those
rows that correspond to variables fhand to those columns that
have been assigned to componkty the allocation vectoy.

The (dynamic) BGM counterpart of Eq. (40) is given by:

K N
P(D|G,V,K) = HH
e 42)

whereD(i)(V#)-S is the data subset db(i) which is restricted to

v k) { XNt ”1}\QF({XN+177H})
D(i) VR A7} |G (1:))

where Ty, «, and v are hyperparameters that have to be those rows that correspond to variablesSimnd to those columns
specified, andet(TO ) anddet(T3) denote the determinants of the that have been assigned to comporiehy the allocation vectoy.

submatricegy’ andT’3 consisting only of those rows and columns

that correspond to variables in the subsetT> was defined in
Eq. (33), andc(n, «) and ¢(n,« + m) can be computed with
Eq. (36).

5 PREDICTIVE PROBABILITIES

In this section we describe how to compute predictive probabilities
for Bayesian networks. The first subsection deals with BGe, and the

When (instead of independent observations) time series datgecond subsection fosuses on the novel BGM model. Finally, in the

(Xi1,t,...XnN,¢)t=1,...,m have been collected for the domain,

.....

third subsection we give a brief summary of error propagation.

dynamic Bayesian networks (DBNs) can be employed. In DBNs

each edge corresponds to an interaction with a time delayg. for
7 = 1 an edge pointing fronX; to X; means that the realisation
x;+ of X; at time pointt is influenced by the realisation; ;1
of X, at the previous time point — 1. This can be taken into

5.1 Predictive probabilitiesfor BGe

We assume that we have a training dataR3eif size N-by-m and
an independent test data sBtof size N-by-n for the domain
Xi,...,Xn. As before, D; ; and D; ; correspond to the-th
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observation of the-th domain nodeX; in D and D respectively. A possible approach is to approximately sample grafghg and

We merge both data sets row-wise to obtain a new dat®3eif {g:} from the posterior distributio® (G, §|D) with MCMC and to
size N-by-(m + m), and we define: approximate the integral in Eq. (48) by a sum over this sample. A
better method is to use the expansiB(G, D) = P(q|G, D) -
P(G|D) and draw on the fact that

= = | WG.D) = [dP(PIG. ) P@G.D)  (49)
(43) :
where . . . .
can be calculated analytically. Inserting Eq. (49) in Eq. (48) yields:
1 m m B
D = — (;D,J- +;D‘j> (44) P(D|D) = qu (G,D) - P(G|D) (50)
Let S C {Xi,...,Xn} denote ann-dimensional subset o S

of the N domain variables. The predictive probabiliy :=  Which in practice is computed from a sampl&,...,Gr}

P(DH DS} Gr(9)) for the data subséd®? D conditional ~ approximately drawn from the posterior distributiéi{G|D) with
on the subseD{} ¢ D and a full graphgx(S) for the sub-domain  MCMC:

S can then be factorised using Eq. (15) of Geiger and Heckerman P(D|D) ( 51
Consequently, an estimator for the predictive probability is given
m by:
=[P DE .. DI, DY, DS, gr(9)) . 1 & )
-131 ’ ’ Ppce(DID) = 7 ) | Poce(DID, Gi) (52)
(45) i=1

s ~{s . .
dimensional sub-domaifi in D andD respectively.
And in analogy to Eq. (15) in Geiger and Heckerman (1994) it can

be derived: PBGe(f)\D g) =
P o= (27) " n ( vtm_ )n/Q. c(n, o +m)~ ﬂ PG v py XN} G (X, mi))
v+m+m c(n,a+m+m) bl P(D@@) i} | D(i) (i}, G (m;))
det(TS) 5 - det(Tg 5)~ 5 (53)
(46)

In Egq. (53) m; is the parent set of variableX; in G and
Gr({Xn+1,m}) andGr(m;) are full graphs for the corresponding

wherea andwv are hyperparameters that have to be speuﬂ@, subsets.

is the submatrix off» (see Eq. (33)) imposed by the subsebf
the domain variables, that is, the submatrix consisting only of thos&.2  Predictive probabilities for BGM
rows and columns that correspond to variableS.in(n, a+m) and

o The results of the last subsection can be straightforwardly extended
¢(n, a+m+m) can be computed from Eq. (36)y, 5 is given by:

to the dynamic BGM model whem: = m and a one-to-one
correspondence between the observatior®® endD, e.g. implied
(ﬁo_ﬁ)(ﬁo_ﬁ)T 47) by identical tinje points, is giyen. We assume that we have
a sample{[G1, V1, K1],...,[Gr, Vr,Kr]} approximately drawn
from the posterior distributiorP(G, V, K|D) with MCMC. The
eBGM analogon of Eq. (52) is then given by:

(m+m)

T, 7 =T
D,D 0+SDD+,U+m+m

andTg 5 Is the submatrix off’;, 5 imposed by the subsét of the
domain variables. That is the submatrix consisting only of thos
rows and columns that correspond to variableS.in
o . _ PBGM(D|D ZPBGM D|D, Gi, Vi, Ki) (54)
Predictive probabilities?(D|D) can be computed for static and i—1

dynamic Bayesian networks with the BGe scoring metric. Here we vhere the probabllltlefBGM(Dm G. 7, K) can be factorised
focus on the predictive distribution for dynamic Bayesian networks accordlng t0 Eq.( 25):

(DBNs), and we show that they can be estimated from a sample
{G1,...,Gr} approximately drawn from the posterior distribution K
P(g\D) with MCMC. pBGM(f)‘D7g7fj’/c H
As before, denote by the graph, and le§ denote the vector of b1
parameters associated wifh We get the following expression for L x . NP Ky

the predictive distribution: P(D(@H) VR X rimid () VR AXN T G (X, mi))
P(D(i)VR) A} D (i) Vk) i} G ()

\\:]z

P(D|D) = dqP(D|G,q) - P(G,qD) (48)
g/ (55)
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where D(i)V*)5 and D(i)V*)S are data subsets oP(i)  the posterior distributiod (K, V, G|D) with MCMC:
and D(i), respectively, which are restricted to those rows that

correspond to variables i¥ and to those columns that have N 1L R ~

been assigned to componehtby the allocation vectod). The P(DID) = 7 > W(Ks, Vi, Gi, D) (60)
probabilities in the numerator and denominator of each factor can i=1

be computed using a modified version of Eq. (46). That is, eachj3 Error propagation

predictive probability P := P(DY:F:ASHDVRASYH G (5)) e S
for the data subseD"*-{5} < D conditional on the subset The standard deviations of the estimatétsc. (D|D) in Eq. (52)
DV:R-{5} D and a full graptG () for then-dimensional sub- ~ @ndPraar (D|D) in Eq. (54) are given by:

domainS C {Xi,..., Xy} can be factorised using Eq. (15) of
Geiger and Heckerman (1994):

o {@:(@D)} =
nemg, v+m n/2 c(n, a +my) T 2\ ?
P o= (2m)EE L (_vEme )T ) k) (P2ce(DID,G:) - Pac.(DID))
(2m) (v+mk+mk) c(n, a +my, + M) ( ; Bae(D|D,Gi) BGe(D|D)
= atmy = _atmy iy
det(T %) Sdet(TY S5
(56)
wherea andv are hyperparameters that have to be specifieg, {P Bam ( }
andrny. are the numbers of observations that are allocated té-the -
th mixture component by, ¢(n, a + my) ande(n, a + my, + M) Z (PBG]\/I (BID, Gs, Vi, ko) — PBGM
can be computed from Eq. (365" and TWD’“) S can be —~ Y

computed using Eq. (33) and Eq. (47) after havmg replabed
and D by the data subse®¥"¥):S and DV#):S | 1 andm by
my, andmyg, o by the subvectop‘as consisting of those entries
onIy corresponding to variables i, and Ty by the submatrix
Ty consisting of those rows and columns only corresponding to
variables inS. We note that the means in Eq. (34) and Eq. (44) andeSt'matorSloge(PBGe(D‘D)) and log. Pz (D|D)) are given
the covariances in Eq. (35) and Eq. (43) are thedimensional,
that is, restricted to the variables #. Furthermore,,m and m .
are replaced byn; and my, as the means and covariances are — U{PBGe(D‘D)}
computed for the subset of observations that are allocated to the o {loge(PBGe(Dm))} = W
k-th mixture component by ©

Applying the statistical rules of error propagation({(z)) =
f'(z) - o(x)) for the log.(.) transformation we obtain that
the standard dewatlons of the Iogarlthmlc predictive probability

U{P/BEI(@\D)}

Finally, we note that Eq. (54) can be derived in analogy to J{lo.ge(P/BG\M({)|D))} = P/\(ﬁﬂ))
BGM

Eq. (52) in the last subsection.
For BGM we get the following expression for the predictive
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