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ABSTRACT

Method: The objective of the present article is to propose and
evaluate a probabilistic approach based on Bayesian networks
for modelling non-homogeneous and non-linear gene regulatory
processes. The method is based on a mixture model, using latent
variables to assign individual measurements to different classes. The
practical inference follows the Bayesian paradigm and samples the
network structure, the number of classes and the assignment of
latent variables from the posterior distribution with Markov Chain
Monte Carlo (MCMC), using the recently proposed allocation sampler
as an alternative to RJMCMC.
Results: We have evaluated the method using three criteria: network
reconstruction, statistical significance and biological plausibility. In
terms of network reconstruction, we found improved results both
for a synthetic network of known structure and for a small real
regulatory network derived from the literature. We have assessed
the statistical significance of the improvement on gene expression
time series for two different systems (viral challenge of macrophages,
and circadian rhythms in plants), where the proposed new scheme
tends to outperform the classical BGe score. Regarding biological
plausibility, we found that the inference results obtained with the
proposed method were in excellent agreement with biological
findings, predicting dichotomies that one would expect to find in the
studied systems.
Availability: Two supplementary papers on theoretical (T) and experi-
mental (E) aspects and the datasets used in our study are available
from http://www.bioss.ac.uk/associates/marco/supplement/
Contact: marco@bioss.ac.uk, dirk@bioss.ac.uk

1 INTRODUCTION
The ultimate objective of systems biology is the elucidation of
the regulatory networks and signalling pathways of the cell. The
ideal approach would be the deduction of a detailed mathematical
description of the entire system in terms of a set of coupled
non-linear differential equations. As high-throughput measurements
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at the cell level are inherently stochastic and most kinetic rate
constants cannot be measured directly, the parameters of the system
would have to be estimated from the data. Unfortunately, multiple
parameter sets of non-linear systems of differential equations
can offer equally plausible solutions, and standard optimization
techniques in high-dimensional multimodal parameter spaces are
not robust and do not provide a reliable indication of the confidence
intervals. Most importantly, model selection would be impeded by
the fact that more complex pathway models would always provide
a better explanation of the data than less complex ones, rendering
this approach intrinsically susceptible to over-fitting.

To assist the elucidation of regulatory network structures,
probabilistic machine learning methods based on Bayesian networks
can be employed, as proposed in the seminal paper by Friedman
et al. (2000). In a nutshell, the idea is to simplify the mathematical
description of the biological system by replacing coupled differential
equations by simple conditional probability distributions of a
standard form such that the unknown parameters can be integrated
out analytically. This results in a scoring function (the ‘marginal
likelihood’) of closed form that depends only on the structure
of the regulatory network and avoids the over-fitting problem
referred to above. Novel fast Markov Chain Monte Carlo (MCMC)
algorithms, like Grzegorczyk and Husmeier (2008), can be applied
to systematically search the space of network structures for those
that are most consistent with the data. To obtain the closed
form expression of the marginal likelihood referred to above,
two probabilistic models with their respective conjugate prior
distributions have been employed in the past: the multinomial
distribution with the Dirichlet prior, leading to the so-called BDe
score (Cooper and Herskovits, 1992), and the linear Gaussian
distribution with the normal-Wishart prior, leading to the BGe score
(Geiger and Heckerman, 1994). These approaches are restricted
in that they either require the data to be discretized (BDe) or can
only capture linear regulatory relationships (BGe). A non-linear
non-discretized model based on heteroscedastic regression has been
proposed by Imoto et al. (2003). However, this approach no longer
allows the marginal likelihood to be obtained in closed form and
requires a restrictive approximation (the Laplace approximation)
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to be adopted. Another non-linear model based on node-specific
Gaussian mixture models has been proposed in Ko et al. (2007).
Again, the marginal likelihood is intractable. The authors resort
to the Bayesian information criterion (BIC) of Schwarz (1978) for
model selection, which is only a good approximation to the marginal
likelihood in the limit of very large datasets. In the present article
we propose a non-linear generalization of the BGe score, which
is motivated by the fact that any probability distribution can, in
principle, be approximated arbitrarily closely by a mixture model.
Our method is based on recent work by Nobile and Fearnside
(2007), who proposed the allocation sampler as an alternative to
the computationally expensive approach of reversible jump Markov
chain Monte Carlo (RJMCMC) (Green, 1995). We will describe the
method in Section 2. We have evaluated our approach on a set of
synthetic and real-world datasets described in Section 3 according to
criteria outlined in Section 4. The results are presented in Section 5
and discussed in Section 6. A concluding summary of the proposed
method and the results can be found in Section 7.

2 METHOD
We focus on the most important methodological aspects. A more detailed
representation can be found in Supplementary Material T.

2.1 Bayesian network methodology
Static Bayesian networks (BNs) are interpretable and flexible models for
representing probabilistic relationships between interacting variables. At a
qualitative level, the graph of a BN describes the relationships between the
domain variables in the form of conditional independence relations. At a
quantitative level, local relationships between variables are described by
conditional probability distributions. Formally, a BN is defined by a graph
G, a family of conditional probability distributions F, and their parameters
q, which together specify a joint distribution over the domain variables.

The graph G of a BN consists of a set of N nodes (variables) X1,...,XN

and a set of directed edges between these nodes. The parent set of node
Xn, symbolically πn, is defined as the set of all parent nodes of Xn, that
is, the set of nodes from which an edge points to Xn in G. The structure
of a static BN is defined to be a directed acyclic graph (DAG), that is, a
directed graph without any cycles of directed edges (loops). It is due to this
acyclicity constraint that the joint probability distribution in BNs can be
uniquely factorized as follows:

P(X1,...,XN )=
N∏

n=1

P(Xn|πn) (1)

Stochastic models for Bayesian networks (Friedman et al., 2000) specify
the distributional form of the local probability distributions P(Xn|πn). Given
data D and a parametric model, (DAGs), G can be scored with respect to
their posterior probabilities:

P(G|D)= P(G,D)

P(D)
= P(D|G)P(G)∑

G� P(D|G�)P(G�) , (2)

where P(D|G) is the marginal likelihood and P(G) is the prior distribution
over the space of graphs. For two stochastic models BDe and BGe a
closed-form solution can be derived for the likelihood P(D|G) (Cooper and
Herskovits, 1992; Geiger and Heckerman, 1994).

When time series data (X1,t,...XN,t)t=1,...,m have been collected, dynamic
Bayesian networks (DBNs) can be employed. In DBNs edges correspond to
interactions with a time delay τ ; e.g. for τ=1 an edge pointing from Xi to Xj

means that the realization of Xj at time point t is influenced by the realization
of Xi at the previous time point t−1. In DBNs parameters are tied such that
the transition probabilities between time slices t−1 and t are the same for

all t, resulting in a homogeneous Markovian dependence. Because of the
time delay of interactions and the bipartite graph structure thus imposed,
the acyclicity of the underlying graph G is automatically guaranteed, and
Equation (1) is replaced by:

P(X1,t,...,XN,t)=
N∏

n=1

P(Xn,t |πn,t−1) (3)

where πn,t−1 denotes the parent set of Xn at the previous time point t−1.
For more details see Friedman et al. (1998).

MCMC methods can be used for sampling DAGs G from the posterior
distribution P(G|D). The structure MCMC approach of Madigan and York
(1995) generates a sample of graphs G1, ...,GT as follows: given a graph Gi,
a new candidate graph Gi+1 is proposed with probability:

Q(Gi+1|Gi)=
{

1
|N (Gi)| , Gi+1∈N (Gi)
0 , Gi+1 /∈N (Gi)

}
(4)

where N (Gi) denotes the neighbourhood of Gi, that is the collection of all
valid graphs that can be reached from Gi by deletion, addition or reversal
of one single edge of the current graph Gi, and |N (Gi)| is the cardinality
of this collection. We note that all neighbour graphs Gi+1 have to be
acyclic when non-dynamic BNs are employed. The graph Gi+1 is accepted
with probability:

A(Gi+1|Gi)=min

{
1,

P(D|Gi+1)P(Gi+1)

P(D|Gi)P(Gi)
· |N (Gi)|
|N (Gi+1)|

}
(5)

otherwise the chain is left unchanged, symbolically Gi+1 :=Gi. The Markov
chain {Gi} converges to the posterior distribution P(G|D) (Madigan and
York, 1995). If a fan-in restriction is imposed on the cardinality of the parent
sets, all graphs possessing a node with more than fan-in parent nodes have
to be excluded from the graph neighbourhoods. Structure MCMC generates
a graph sample {G1, ...,GT }, from which posterior probabilities of edges
can be computed. We focus on undirected edges for independent data and
directed edges for time-dependent data. There is an undirected edge between
Xi and Xj (i< j) in G, if G possesses either the edge Xi→Xj or the edge
Xi←Xj . Likewise, there is a directed edge from Xi to Xj (i �= j) in G, if G
possesses the edge Xi→Xj . An estimator for the posterior probabilities of
an edge is given by the fraction of graphs in the sample that contain the
edge of interest. When the true graph for the domain is known, the concept
of receiver operator characteristic (ROC) curves and area under receiver
operator characteristic (AUROC) values can be used to evaluate the global
network reconstruction accuracy of BN inference (see e.g. Husmeier (2003)
for details). An alternative and more intuitive criteria is given by (TP|FP=5)
counts: for each MCMC output a thresholdψ is imposed on the inferred edge
posterior probabilities such that five false positive (FP) edges are extracted
and the corresponding number of true positive (TP) edges, symbolically
(TP|FP=5), exceeding the threshold ψ , is counted (Werhli et al., 2006).

2.2 Gaussian mixture Bayesian network model
We assume that we have either m independent and identically distributed
(iid) observations (BNs) or m+1 time-dependent observations with a
homogeneous first-order Markovian dependence structure (DBNs) for the
variables X1,... ,XN . This gives a dataset matrix of size N-by-m, where Dj

(j=1,...,m) is the j-th observation of the N nodes. The allocation vector �V of
size m defines an allocation of the m observations to K mixture components:
�V(j)=k means that the j-th observation is allocated to the k-th component.

D( �V,k) denotes the data subset consisting of all observations allocated to the
k-th component by �V (1≤k≤K). The joint posterior probability of a graph
G, an allocation vector �V , and K mixture components can be factorized as
follows:

P(G, �V,K|D)=P(G, �V,K,D)

P(D)
∝ P(G, �V,K,D) (6)

=P(K)P( �V|K)P(G)P(D|G, �V,K)

2072



Non-stationary processes in gene regulatory networks

where

P(D|G, �V,K)=
K∏

k=1

P(D( �V,k)|G) (7)

In Equation (7) the likelihood terms P(D( �V,k)|G) for the data subsets D( �V,k)

given the same graph G can be computed independently with the BGe
scoring metric of Geiger and Heckerman (1994), as derived and discussed
in Supplementary Materials T. If no observation is allocated to the k-th

component (D( �V,k)=∅), then P(D( �V,k)|G) is equal to 1. As we do not have
any prior knowledge about the graph topology we assume a uniform prior
distribution on graphs for the real gene expression data, P(G)=const. For
the synthetic Raf-Mek-Erk network data we employ a more restrictive graph
prior (see Supplementary Materials T and E). For the prior on K, P(K),
we take a truncated Poisson distribution with parameter λ=1 restricted to
1≤K≤KMAX. This prior is known to be suitable for finite mixture models
(Nobile, 2005). We further assume that the probability distribution of the
allocation vector �V conditional on K is given by:

P( �V|K,�p)=
K∏

k=1

pnk
k (8)

where �p= (p1,...,pK)T with
∑K

k=1 pk=1 are the non-negative mixture
weights, and nk is the number of observations allocated to the k-th mixture
component by �V . The prior on the mixture weights �p= (p1,...,pK)T is chosen
to be a Dirichlet distribution, P(�p)=Dir(α1,...,αK), with hyperparameters
�α= (α1,...,αK)T . This prior is conjugate, and the marginal probability of �V
conditional on K is thus given by

P( �V|K)=
∫

P( �V|K,�p)P(�p)d�p=Dir(n1+α1,...,nK+αK) (9)

2.3 Gaussian mixture allocation MCMC inference
The new Gaussian mixture allocation MCMC sampling scheme (BGM)
generates a sample from the joint posterior distribution P(G,K, �V|D) given
in Equation (6) and comprises six different types of moves in the state-space
[G,K, �V]. The first move type is a structure MCMC single edge operation on
the graph G while the number of components K and the allocation vector �V
are left unchanged. According to Equation (4), a new graph G̃ is proposed,
and the new state [G̃,K, �V] is accepted or rejected according to Equation (5)
where the likelihood terms P(D|G) in Equation (5) have to be replaced by
the P(D|G,K, �V) terms given in Equation (7). The five other move types are
adapted from Nobile and Fearnside (2007) and operate on �V or on K and �V . If
there are K>2 mixture components, then moves of the type M1 and M2 can
be used to re-allocate some observations from one component k1 to another
one k2. That is, a new allocation vector �V∗ is proposed while G and K are
left unchanged. The Ejection move type proposes an increase in the number
of mixture components by one and simultaneously tries to re-allocate some
observations to fill the new component. More precisely, it randomly selects
a mixture component and tries to re-allocate some of its observations to the
newly proposed component K+1, while G is left unchanged. The Absorption
move is complementary to the Ejection move and decreases the number of
mixture components by one. It randomly selects two mixture components
and deletes one of them after having reallocated all of its observations to
the other component. The acceptance probabilities for M1, M2, Ejection and
Absorption moves are of the same functional form:

A=
{

1,
P( �V∗|K)

P( �V|K)
· P(D|G, �V,K)

P(D|G, �V,K∗)
· Q( �V∗| �V)

Q( �V| �V∗) ·
P(K∗)
P(K)

}
(10)

where the likelihood terms have been specified in Equation (7), the
proposal probabilities Q(.|.) depend on the move type (M1, M2, Ejection
or Absorption), and K∗=K for M1 and M2 moves K∗=K+1 for Ejection
moves, and K∗=K−1 for Absorption moves. See Supplementary Material
T and Nobile and Fearnside (2007) for details. Finally, the sixth move type
uses Gibbs sampling to re-allocate a single observation by sampling its new
allocation from the corresponding univariate conditional distribution, while
leaving K and the other components of �V unchanged.

3 DATA
We have evaluated the proposed method on synthetic data generated
from a widely studied protein signalling network and on gene
expression time series from two different biological systems. For
details of the simulation studies see Supplementary Material E.

3.1 Synthetic data
For a comparative evaluation study, Werhli et al. (2006) generated
synthetic datasets for the Raf-Mek-Erk signalling pathway presented
in Sachs et al. (2005), which consists of 11 nodes representing
phosphorylated proteins and 20 directed edges. As Werhli et al.
(2006) assigned Gaussian regulatory mechanisms with varying
(randomly sampled) parameters, we can generate Gaussian mixture
network data as follows: for obtaining data with K=1,... ,5
components we randomly selected K of the original datasets,
sampled the same number of observations m/K from each and
merged these observations to a single dataset of size m. For each
of 16 combinations of m (m=30,60,120,180) and K we generated
five datasets by applying this procedure. Additionally, for each
K=1,... ,5 we generated five further datasets along this line Werhli
et al. (2006) with m=480 observations each.

3.2 Bone marrow-derived macrophages
Interferons (IFNs) play a pivotal role in the innate and adaptive
mammalian immune response against infection, and central research
efforts, therefore, aim to elucidate their regulatory interactions
(Honda et al., 2006). For the present study, we have applied our
method to gene expression time series from bone marrow-derived
macrophages, which were sampled at 24× 30 min time intervals.
The macrophages were subjected to three external conditions:
(1) infection with Cytomegalovirus (CMV), (2) treatment with
Interferon Gamma (IFNγ ) and (3) infection with Cytomegalovirus
after pretreatment with IFNγ (CMV+IFNγ ). To obtain the gene
expression profiles, samples derived from the macrophages were
hybridized to Agilent mouse genome arrays. Samples were
co-hybridized with a pooled common control RNA. Expression
levels were obtained in the form of log2 scale signal intensity
ratios between the sample and the pooled control RNA. Differential
dye-label incorporation between the two samples on each array was
corrected by applying a within-array, non-linear, loess normalization
to the ratios. Global non-biological variations between ratio
distributions were corrected by applying median-absolute-deviation
between-array normalization. We focus on time series of the
Interferon regulatory factors (Irfs) 1, 2 and 3 (which we write as
Irf1, Irf2 and Irf3, respectively), as a gold standard network for the
interactions between these factors can be derived from the literature
(Darnell et al., 1994; Raza et al., 2008): Irf2 ↔ Irf1 ← Irf3.
The Irfs are the key regulators in the response of the macrophage
cell to pathogens. They mediate the cellular signalling that leads to
a transcriptional response to the initial binding events on the surface
of the cell.

3.3 Circadian regulation in Arabidopsis thaliana
We have also applied our method to two gene expression time series
from A.thaliana cells, which were sampled at 13× 2 h time intervals
with Affymetrix microarray chips, and robust multi-array (RMA)
normalized. The expressions were measured twice independently
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under experimentally generated constant light condition, but differed
with respect to the prehistories. In the first experiment, T20, the plant
was entrained in a 10h:10h light/dark cycle, while the plant in the
second experiment, T28, was entrained in 14h:14h light/dark cycle.
Our analysis focuses on nine genes, namely LHY, CCA1, TOC1,
ELF4, ELF3, GI, PRR9, PRR5 and PRR3, which are known to be
involved in circadian regulation (Mas, 2008; Salome and McClung,
2004).

4 EVALUATION
To evaluate the proposed method (BGM), we have compared it
with Bayesian learning of homogeneous BNs using the standard
BGe score, as described in Geiger and Heckerman (1994). We
have applied a 3-fold evaluation procedure. First, we use static
synthetic network data to show that if the data are, in fact,
of a heterogeneous nature, BGM achieves improved network
reconstruction results. Second, using gene expression time series
from bone marrow-derived macrophages, we focus on a small
subsystem of the IFN pathway whose biology is well understood,
and we demonstrate that BGM leads to a better pathway
reconstruction. Third, we consider a larger set of circadian genes
from A.thaliana. Since the true network structure in this case is
not known, we apply two standard methods from statistics for the
evaluation: Bayes factors and predictive distributions. We briefly
describe these methods in the remainder of this section. The
mathematical details can be found in Supplementary Material T.
We want to compare two competing hypotheses. According to the
null hypothesis H0, the conventional homogeneous DBN (BGe) is
the adequate model. We want to compare this with the alternative
hypothesis H1 that the proposed non-homogeneous DBN (BGM)
provides the right description of the system. We want to pursue a
Bayesian approach, according to which the decision between the
two hypotheses is based on the Bayes factor: P(D|H1)/P(D|H0).
Note that the two hypotheses are nested, and that P(D|H0)=
P(D|K=1,H1). We can therefore follow Huelsenbeck et al. (2004)
and calculate the Bayes factor using the Savage-Dickey ratio
(Verdinelli and Wasserman, 1995):

P(D|H1)

P(D|H0)
= P(K=1|H1)

P(K=1|D,H1)
(11)

where K is the number of mixture components (segments). The
validity of Equation (11) can easily be proven from Bayes rule:

P(K=1|D,H1)= P(D|K=1,H1)P(K=1|H1)

P(D|H1)
(12)

As an alternative procedure, we adopt an approach based on the
predictive distribution promoted in Vehtari and Lampinen
(2002). However, as opposed to the authors we do not
resort to a cross-validation procedure, but exploit the fact
that in our experiments gene expressions were obtained under
different experimental conditions: CMV, IFNγ and CMV+IFNγ
(macrophages) or T20 and T28 (circadian genes), respectively.
Denote by D the gene expression data obtained under a condition
used for training. Denote by D̃ the gene expression data obtained
from a separate experiment under a different condition. We
can then base the hypothesis test on a comparison of the
predictive distributions P(D̃|D,H1) and P(D̃|D,H0). Note that
these distributions measure how well new independent test data D̃

can be predicted under the two hypotheses, using the training data D.
As before, K denotes the number of mixture components, �V denotes
the allocation vector, G denotes the graph, and let �q denote the vector
of parameters associated with G. We get the following expression
for the predictive distribution:

P(D̃|D,Hi)=
∑

K, �V,G

∫
P(D̃|K, �V,G,�q,Hi)P(K, �V,G,�q|D,Hi)d�q (13)

A possible approach is to approximately sample [K, �V,G] and �q from
the posterior distribution P(K, �V,G,�q|D,Hi) with MCMC and to
approximate the integral in Equation (13) by a sum over this sample.
A better method is to use the expansion P(K, �V,G,�q|D,Hi)=
P(�q|K, �V,G,D,Hi)P(K, �V,G|D,Hi) and draw on the fact that

�(K, �V,G,D̃)=
∫

P(D̃|K, �V,G,�q,Hi)P(�q|K, �V,G,D,Hi)d�q (14)

can be calculated analytically (Geiger and Heckerman, 1994) and
Supplementary Material T). Inserting (14) in (13) yields:

P(D̃|D,Hi)=
∑

K, �V,G
�(K, �V,G,D̃)P(K, �V,G|D,Hi) (15)

which in practice is computed from a sample
{[K1, �V1,G1],...,[KT , �VT ,GT ]} approximately drawn from
the posterior distribution P(K, �V,G|D,Hi) with MCMC:

P(D̃|D,Hi)= 1

T

T∑
i=1

�(K, �Vi,Gi,D̃) (16)

The computation of �(K, �V,G,D̃) in (14) requires only a minor
modification of the standard BGe score discussed in Geiger and
Heckerman (1994). The vector �V acts as a filter dividing the
data into different categories, for which separate BGe scores are
computed. For instance, if we have 2 states, 10 time points and
�V=[1111122222], then separate BGe scores are computed for the
first five and the last five time points. The computation of the BGe
score is modified by the fact that the prior distribution P(�q|G,Hi)
is replaced by the posterior distribution P(�q|K, �V,G,D,Hi). This
results in a straightforward modification of the score as follows:
in Equation (13) of Geiger and Heckerman (1994), those training
data that correspond to the corresponding state k, {Dj ∈D| �V(j)=k},
are included in the conditioning part of the distribution, and the
sufficient statistics are adjusted accordingly. We note that BDe and
BGM cannot be compared in terms of predictive distributions, as
the required data discretization (BDe) is not part of the BN model.
That is, while BGM and BGe model the same datasets D and D̃,
BDe is based on their discretized counterparts, resulting from some
(heuristic) pre-processing.

5 RESULTS
The mean AUROC values and the mean (TP|FP=5) counts for
assessing the reconstruction of the Raf-Mek-Erk pathway from
the synthetic data, described in Section 3.1, are represented as
histograms in Figures 1 and 2. It can be seen that BGM performs
significantly better than BDe and BGe for almost all combinations
of K and m. Only if there is either one single component or
a small sample size (m=30), there is no (significant) difference
between BGM and BGe. In particular for K= 1, BGM assigns
all observations to one single component, and so does not differ
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Fig. 1. Raf-Mek-Erk network reconstruction accuracy for synthetic data. Histograms of the network reconstruction accuracy for different combinations of
KTRUE (KTRUE=1,...,5) and sample size m (m=30,60,120,180) assessed in terms of mean AUROC values (panels (a–e)) and (TP|FP= 5) counts (panels
(f–j)) derived from undirected edges. White bars refer to BDe, grey bars refer to BGe, and black bars refer to BGM. The SDs are indicated by vertical
black lines.
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Fig. 2. Raf-Mek-Erk network reconstruction accuracy for synthetic data
with m = 480. Histograms of the network reconstruction accuracy for
KTRUE=1,...,5 assessed in terms of mean AUROC values (a) and
(TP|FP= 5) counts (b) derived from undirected edges. White bars refer to
BDe, grey bars refer to BGe and black bars refer to BGM. The SDs are
indicated by vertical black lines.

from BGe. Figure 3 reveals that BGM infers for each number
of components KTRUE the correct number of components for
the synthetic data with m=480 observations. Histograms of the
numbers of inferred components for the synthetic data with fewer
data points m are provided in Figure 1 in Supplementary Material E.

A comparison of Figures 1 and 2 reveals that the reconstruction
accuracy is slightly worse for the datasets with m= 480
observations. This finding might appear counter intuitive, as larger
datasets contain more information and should therefore lead to better
performances. However, our finding is consistent with the fact that
increased dataset sizes lead to likelihood landscapes that are more
rugged and, hence, result in increased mixing and convergence
problems. This shortcoming of the structure MCMC sampler by
Madigan and York (1995) has already been reported (e.g. see
Grzegorczyk and Husmeier, 2008).

For the macrophage gene expression time series, BGM infers
K=2 components for the conditions CMV and IFNγ , while for the
third condition (CMV+IFNγ ) most of the sampled states consist
of K=1 component only, as shown in Figure 4. The fraction of
sampled states for which two observations i and j are allocated to
the same component k (1≤k≤K) can be used as a connectivity
measure C(i, j). Figure 5 displays the resulting connectivity matrices
graphically as heat matrices. From the heat matrices the same

systematic trend can be observed for the three conditions. The
first part (observations no. 2–6) and the last part of the three time
series (observations no. 8–25) are allocated to different components.
For condition CMV (IFNγ ) the allocation of observation no. 7
(no. 9) is not fixed, that is, the allocation changes during the MCMC
simulation. For CMV + IFNγ , whose number of components peaks
at K=1 (Fig. 4), the separation between the two parts is less
pronounced, though consistent with the other results. To understand
whether BGM also leads to a better network reconstruction accuracy,
we compare the mean posterior probabilities of the true and false
edges of BGM in Figure 6 with those obtained from BGe and BDe.
For the IFNγ condition (Fig. 6b) it becomes obvious that BGM has
performed substantially better than BGe and BDe. For the other two
conditions the difference between the posterior means for the true
and the false edges is also best for BGM, but the difference is less
pronounced [BDe: 0.24, BGe: 0.24, BGM: 0.39 (CMV) and BDe:
−0.42 , BGe: 0.09, BGM: 0.14 (CMV + IFNγ )]. Since it appears that
the three conditions do not lead to systematic deviations between
the expression profiles of Irf1, Irf2 and Irf3, we treat the three
experiments as independent replications and compute predictive
probabilities, as discussed in Section 4. The predictive probabilities
for BGM are much higher than those of BGe (Table 2). This finding
provides further evidence that BGM does not overfit the data but
outputs results that can be confirmed by independent replications.
The BGM/BGe Bayes factors are: 36.45 (CMV), 2.73 (IFNγ ) and
0.71 (CMV + IFNγ ). This finding is consistent with Figure 4, where
the peaks for CMV and IFNγ are at 2, while CMV + IFNγ peaks at
1. Gene expression time series plots and scatter plots for the three
Irf factors can be found in Supplementary Material E.

For both A.thaliana gene expression time series (see
Supplementary Material E) the number of components inferred
with BGM peaks at 2 (Fig. 7a and b). The heat matrices shown in
Figure 7a and b appear to be of a similar structure, but subject to
a translation along the main diagonal. More precisely, it appears
that the transition from the first to the second component is shifted
by 2–3 time points (4–6 h). Compared with BGe the Bayes factors
are in favour of BGM: 5.66 (T20) and 9.41 (T28). The predictive
probabilities are given in Table 1 and confirm the improved
generalization performance. Further plots for the Arabidopsis data
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Fig. 3. Histograms of the numbers of BGM components for synthetic Gaussian data with m = 480 observations. The posterior probabilities (vertical axis) of
the number of components K (horizontal axis) have been estimated from the MCMC trajectories. For KTRUE=1,...,5 the MCMC trajectories for the five
datasets have been merged.
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Fig. 4. Histograms of the numbers of BGM components for macrophage gene expression time series. For each experimental condition the posterior probability
(vertical axis) of the number of components K (horizontal axis) have been estimated from the MCMC trajectories.
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Fig. 5. Graphical presentation of the temporal connectivity structure for the macrophage gene expression data. The figure shows heatmap representations
that indicate the estimated posterior probability of two time points being assigned to the same state (component). The probabilities are represented by a grey
shading, where white corresponds to a probability of 1, and black corresponds to a probability of 0. The numbers on the axes represent the time points of the
time course experiment. The analysis was repeated for all three experimental conditions CMV, IFNγ and CMV + IFNγ , as explained in the text.

are provided in Supplementary Material E, and the inference results
are discussed in more detail in Section 6.

6 DISCUSSION
The results for the synthetic data generated from the Raf-Mek-
Erk pathway of Sachs et al. (2005) show that the proposed BGM
scheme consistently outperforms the conventional BGe and BDe
metrics in terms of global network reconstruction accuracy (Figs 1
and 2). This confirms that BGM is superior when the data stem
from a mixture distribution, and that the proposed sampling scheme
(allocation MCMC) renders the inference, which is more complex
than for the conventional case, practically viable. Furthermore,
histograms of the number of inferred mixture components (Fig. 3)

reveal that BGM succeeds in inferring the correct number of
components. To assess whether BGM achieves any improvement for
real biological applications, we applied it to gene expression data
obtained from two different platforms (Agilent and Affymetrix) for
two different systems: macrophages challenged with viral infection,
and circadian rhythms in plants.

For macrophages challenged with CMV or pretreated with IFNγ ,
BGM tends to infer a two-stage process (Fig. 4). This two-stage
process reflects a state change in the host macrophage brought about
by infection (CMV) or immune activation (IFNγ ), and can be found
in all three experimental conditions (Fig. 5). Interestingly, though,
this state change is less pronounced in the combined condition
CMV+IFNγ (Fig. 4c), where the Bayes factor does not support
the more flexible heterogeneous model (see the previous section).
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Fig. 6. Reconstructing the regulatory network of the Irfs. (a–c): Mean posterior probabilities (vertical axis) of true and false edges in the Irf regulatory
network, inferred with BDe, BGe and BGM (horizontal axis) from the macrophage gene expression time series. According to the biological literature the true
edges are: Irf 1→ Irf 2, Irf 2→ Irf 1 and Irf 3→ Irf 1, while the edges Irf 1→ Irf 3, Irf 2→ Irf 3 and Irf 3→ Irf 2 are spurious. In (d) an AUROC histogram plot
is given. For each of the three conditions the histogram shows bars of the BDe (white), BGe (grey) and BGM (black) AUROC values. It can be seen that
BGM is never inferior to BDe or BGe in terms of AUROC scores, but BGM outperforms (i) BDe for conditions CMV and CMV + IFNγ and (ii) BGe for
conditions IFNγ and CMV + IFNγ .

Table 1. Logarithmic predictive probabilities for the A.thaliana data:
loge(P(D̃|D,H0)) (BGE) and loge(P(D̃|D,H1)) (BGM)

D Hi D̃=T20 D̃=T28

T20 BGe – −64.29 (±0.29)
BGM – −53.69 (±0.42)

T28 BGe −63.93 (±0.22) –
BGM −54.78 (±0.63) –

The SDs of the logarithmic probabilities are given in brackets.

This observation is consistent with the known biological responses
of macrophages to simultaneous infection by virus (mCMV) and
immune (IFNγ ) activation. It suggests that upon dual challenge with
both an infection and immune activation (CMV + IFNγ ) signalling
leads to a pronounced singular response. This is in agreement with
observations of cooperation between viral and immune signalling
in effective vigorous anti-viral state within the host macrophage, as
discussed in Benedict et al. (2001).

For the A.thaliana gene expression time series, BGM also infers
a two-stage process (Fig. 7). In this application, the two stages are
most likely related to the diurnal nature of the dark/light cycle. We
have applied our method to two sets of plant samples, which were
subjected to different prehistories, related to different lengths of the
artificial, experimentally controlled light/dark cycle. Although the
two-stage nature of the process is preserved, the state co-allocation
posterior probabilities, shown in the heatmap of Figure 7, points
to a phase shift of about 4–6 h as a consequence of the increased
day length. This phase shift is biologically plausible and indeed
expected. It can be explained by the early phase of entrainment that
is required to elicit a phase delay that matches the 24-h period of
the wild-type plants to the longer light/dark cycle (T28), compared
to the later phase of entrainment required to elicit a phase advance
to match the shorter light/dark cycle (T20) (Johnson et al., 2003).

We anticipate that a non-linear and non-homogeneous
generalization of (Bayesian) networks will have broader general
utility for reconstructing regulatory networks in systems biology.
In this regard there is increasing interest in the development of new
statistical methods, as exemplified by the recent and related work of
(Lèbre, 2008). Our article complements this work and constitutes a
natural generalization of the BGe score of (Geiger and Heckerman,
1994) by applying the ideas of mixture models and allocation

Table 2. Logarithmic predictive probabilities for the macrophage data:
loge(P(D̃|D,H0)) (BGe) and loge(P(D̃|D,H1)) (BGM)

D̃=DTEST

D=DTRAIN Model CMV IFNγ CMV and IFNγ

CMV BGe – −76.01 (±0.07) −45.26 (±0.03)
BGM – −63.63 (±0.02) −33.80 (±0.38)

IFNγ BGe −56.78 ±0.05 – −57.30 (±0.05)
BGM −39.62 ±0.02 – −42.69 (±0.11)

CMV + BGe −37.76 (±0.08) −69.19 ±0.06 –
IFNγ BGM −21.67 (±0.33) −53.26 ±0.51 –

The SDs of the logarithmic probabilities are given in brackets.

sampling presented in Nobile and Fearnside (2007). This is an
advantage over the work of Ko et al. (2007). While the latter model
is more flexible owing to the fact that different nodes can have
different breakpoints, it leaves the computation of the marginal
likelihood intractable. The authors resort to BIC (Schwarz, 1978)
as a crude approximation to the marginal likelihood. However, this
approximation is only valid in the limit of very large datasets, and
BIC is known to be over-regularized in many practical applications.
For a more detailed theoretical comparison between BGM and the
approaches of Lèbre (2008), and Ko et al. (2007) see Supplementary
Material E. The evaluation of the proposed BGM approach on
synthetic benchmark data and the novel application to two real
biological scenarios provide an encouraging demonstration of the
viability of the proposed BGM method.

7 CONCLUSION
We have proposed a non-linear and non-homogeneous
generalization of the BGe score for Bayesian networks (BGM).
BGM is based on a mixture model, using latent variables to
assign individual measurements to different classes. The practical
inference follows the Bayesian paradigm and samples the graph,
the number of classes and the assignment of latent variables from
the posterior distribution with MCMC, using the allocation sampler
of Nobile and Fearnside (2007) as an alternative to RJMCMC
(Green, 1995). We have evaluated BGM using three criteria:
network reconstruction, statistical significance and agreement with
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Fig. 7. Results of BGM analysis of nine circadian genes in A.thaliana. Two independent experiments under constant light condition were conducted. In
experiment T20 (T28) A. thaliana was entrained in a 10h:10h (14h:14h) dark/light cycle. (a) and (b) show the estimated posterior probabilities (vertical axis) of
the number of BGM components K (horizontal axis). (c) and (d) show the heat map representations of the temporal connectivities, as explained in the caption
of Figure 5. A comparison between the two panels reveals a phase shift of about 2–3 time points (4–6 h.) between the different entrainments T20 and T28.

intrinsic biological features. In terms of network reconstruction,
we found improved results both for a synthetic network of known
structure (Figs 1 and 2) and for a small real regulatory network
derived from the literature (Fig. 6). For assessing the statistical
significance of the improvement, we computed two scores: Bayes
factors and predictive distributions. We applied these scores to gene
expression time series obtained on different platforms (Agilent
and Affymetrix) for two different systems (viral challenge of
macrophages and circadian rhythms in plants), where BGM tended
to outperform BGe (Tables 1 and 2). Interestingly, we found that
when the improvement obtained with BGM was significant, the
posterior distribution peaked at two latent classes (Figs 4 and 7).
This result provides excellent agreement with intrinsic dichotomies
that we expect to find in these systems, related to the dichotomy
between the healthy and diseased state of the cell, and the diurnal
contrast between light and darkness.
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ABSTRACT
Article: In the article we propose a non-linear and non-homogeneous
generalization of the classical BGe score for Bayesian networks. The
method is based on a mixture model, using latent variables to assign
individual measurements to different classes. The practical inference
follows the Bayesian paradigm and samples the network structure,
the number of classes and the assignment of latent variables from
the posterior distribution with MCMC, using the recently proposed
allocation sampler as an alternative to RJMCMC.
Supplementary material: Due to space restrictions of the article
we provide some additional information as supplementary material.
The implementation details of all applied algorithms are given in
Section 1. Additional figures and tables are provided in Section 2. The
computational complexity of the proposed BGM algorithm is briefly
discussed in Section 3. Finally, in Section 4 we provide a theoretical
comparison with two related approaches by Lèbre (2008) and Ko et al.
(2007).
Availability: This supplementary paper on experimental aspects (E)
is available from
http://www.bioss.ac.uk/associates/marco/supplement/E.pdf
A separate supplementary paper on theoretical aspects (T) providing
a more detailed presentation of the mathematical methodology is
available from
http://www.bioss.ac.uk/associates/marco/supplement/T.pdf
The data sets used in our study are available from
http://www.bioss.ac.uk/associates/marco/supplement/
Contact: marco@bioss.ac.uk, dirk@bioss.ac.uk

1 IMPLEMENTATION DETAILS
We implemented structure MCMC according to the presentations
given in Madigan and York (1995), and in all experimental
applications we used the following settings: For structure MCMC
we set the burn-in length to 1,000,000 and then collected 500 graphs

{G1, . . . ,G500} by sampling every 2000 iterations. For BGM we
set the probability for a structure MCMC move to 0.5. And the
probabilities of the other four move types, which all leave the
graph G unchanged, are set to 0.125. The maximal number of
componentsKMAX was set to 10 and we note that this upper limit
was never reached during any MCMC simulation. Equal to the
structure MCMC setting we set the burn-in length to 1,000,000 and

then collected 500 states
{

[G1,K1, ~V1], . . . , [G500,K500, ~V500]
}

each consisting of a graphGi, a number of mixture componentsKi,
and an allocation vector~Vi.

Following Werhli et al. (2006) we restricted the fan-in to 3
and employed the graph priorP (G) given in Eq. (3) of the
supplementary paper on theoretical aspects (T) when analysing the
synthetic Gaussian data. This guarantees that our results forK = 1
are comparable to those of Werhliet al. (2006). But the graph prior
employed by Werhliet al. (2006) yields an intrinsic penalty for
complex networks (see Subsection 1.1 of the supplementary paper
on theoretical aspects (T)). Therefore and as we did not have any
biological prior knowledge about the interactions in the macrophage
and the Arabidopsis domain, the analysis of the gene expression
data was performed with a uniform prior over graphs instead, i.e.
every graph was set to be equally likely a priori. Furthermore, we
decided not to restrict the fan-in for these relatively small domains
with N = 3 (macrophage) andN = 9 (Arapidopsis) nodes only.

For the time series we did not allow forself-loops, that is we did
not allow that a node can be its own parent node, by restricting the
graph’s neighbourhoods in Eq. (7) of the supplementary paper on
theoretical aspects (T) correspondingly. We decided to exclude self-
loops, as they mainly capture degradation processes which are not
of interest for modelling the regulatory interactions between genes.

Finally we note that we always performed two independent
structure MCMC runs for each inference model: BDe, BGe, and
BGM on every data set. Following Friedman and Koller (2003), we

c© Oxford University Press 2008. 1
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started the structure MCMC simulations with the BDe metric and
the BGe metric from the following initialisations: (i) As uninformed
initialization the first structure MCMC run was always seeded by
an empty graph without any edges. (ii) To obtain an informed
initialization we always performed a greedy search algorithm and
seeded the second structure MCMC run with the most likely graph
outputted by greedy search. We initialised the proposed BGM
algorithm with the same graph as the corresponding BGe structure
MCMC simulation, and the number of mixture components was set
toK = 1 so that all observations were allocated to the same single
mixture component at the beginning of the MCMC simulation. We
note that BGM inference with the restrictionK = 1 is equivalent
to structure MCMC inference with the BGe scoring metric. Hence,
a greedy search based on BGe can be seen as a greedy search
based on the BGM model under the constraint that there is exactly
one mixture component, symbolically:K = 1. We note that it
may be advisable to initialise the BGM algorithm not only with a
graph found by a greedy search algorithm based on BGe but also
with an allocation vector outputted by a classification or cluster
algorithm. In our experiments we deliberately avoided to employ
a more informative initialisation for BGM to demonstrate that BGM
succeeds in inferring the true relationships - and especially the
mixture components - independently of the initialisation.

Edge posterior probability scatter plots and trace plot diagnostics,
e.g. of the number of edges of the sampled graphs or of their
logarithmic scores, were used to assess convergence. Except for the
synthetic Raf-Mek-Erk pathway data withm = 480 data points
(where some MCMC simulations did not converge satisfactorily) we
could see from the edge posterior probabilities that the total MCMC
run-length of 2,000,000 for relatively small domains (betweenN =
3 andN = 11 nodes) had led to a satisfactory degree of convergence
(Pearson correlation coefficients greater than 0.98) for all three
inference models (BGe, BDe, and BGM). Therefore we report only
the results of the empty-seeded runs in the article and point out that
we had some convergence problems for the Raf-Mek-Erk pathway
data withm = 480 data points.

The hyperparameters of the BGe and BGM models (see
Section 4.1 of the supplementary paper on theoretical aspects (T))
were set as follows:v = 1, α = N + 2, ~µ0 = (0, . . . , 0)T and
T0 = 0.5 · IN,N whereIN,N is theN -by-N identity matrix andN
is the number of domain variables. The choices ofT0 and ~µ0 ensure
that we are not explicitly biasing our inference to any particular
edge (Friedmanet al., 2000). They reflect a prior belief where allN

domain variables (genes) are identically and independently standard
Gaussian distributed (with mean 0 and variance 1). The effective
sample size parametersv andα were set to small values, as this
ensures that the weight of the prior distribution (induced byT0

and ~µ0) is as uninformative as possible subject to the constraint
that the resulting covariance matrixTD (see Section 4.1 of the
supplementary paper on theoretical aspects (T)) is non-singular
(Geiger and Heckerman, 1994). The prior parameters for the BDe
model were selected as in Giudici and Castelo (2003) to ensure (i)
that the prior is uninformative (total prior decision was set to 1) and
(ii) that equal marginal likelihoods are given to equivalent DAGs.
See Giudici and Castelo (2003) for further details.

2 SUPPLEMENTARY FIGURES AND TABLES
This second section provides additional figures and tables, which
- due to space limitations - could not be included in the main
paper. Most of the captions are self-explanatory, but some further
explanations are given in the text. Figure 1 shows histograms of the
posterior probabilities of the number of MCMC inferred mixture
components for the synthetic Raf-Mek-Erk pathway data with30 ≤
m ≤ 180 data points. It can be seen that the proposed BGM model
tends to infer the correct number of mixture components for these
data sets. There are only 3 out of 16 combinations ofK andm for
which an incorrect number of components was inferred, namely:
(K = 3, m = 60), (K = 5, m = 60), and(K = 5, m = 180).
Especially for the data sets withKTRUE = 5 mixture components
it appears that this inaccuracy of the BGM inference is due to the
fact that there are only few observations per mixture component,
namelymi = 12 for m = 60 andmi = 36 for m = 180, so that the
posterior probability landscape may be relatively flat around the true
regulatory relationships. It can be seen from Figure 3 in the main
paper that the BGM inference on the number of mixture components
becomes more accurate when more data points (m = 480) are
available.
The time series of the analysed Interferon regulatory factors (Irf1,
Irf2, and Irf3) and scatter plots of the three Irf genes are shown in
Figures 2 and 3. In both plots symbols indicate to which mixture
component the observations were allocated. Concrete allocations
were obtained by imposing thresholds on the connectivity matrices,
whereby for each condition (CMV, IFNγ , and CMV+IFNγ) the
threshold was selected such that an allocation consistent with
the trends indicated by the corresponding heat matrix (shown in
Figure 5 of the main paper) was obtained. From the time series
and the scatter plots it appears that the inferred mixture components
differ with respect to the marginal distributions of the three Irf
genes; especially in Figure 3 most of the observations allocated to
the same component tend to appear as clusters of points in the scatter
plots.
The directed edge posterior probability estimates for the Interferon
regulatory factor domain derived from BDe, BGe and BGM
inference are given in Table 1. A concrete network prediction can
be obtained from the estimates in Table 1 by imposing a threshold
and extracting those edges only whose posterior probability estimate
exceeds the predefined threshold. The AUROC scores resulting
from the posterior probability estimates in Table 1 - under the
assumption that the true regulatory relationships are as follows:
Irf2 ↔ Irf1 → Irf3 (Darnell et al. (1994) and Razaet al.
(2008)) - are shown in Figure 6 panel (d) of the main paper.
The time series of the nine circadian genes in Arabidopsis thaliana
are shown in Figure 4. Obviously all these genes have a strong
24hr circadian rhythm, and interestingly it can also be seen that
the light:dark entrainment shifts the gene expression profiles. For
most of the circadian genes the dashed line (T28 corresponding
to 14h:14h entrainment) seems to be shifted by approximately 2
hours compared to the solid line (T20 corresponding to 10h:10h
entrainment). This is in agreement with the BGM inference result
where heat maps (see panels (c) and (d) in Figure 7 of the main
paper) also indicate a time shift. Although the time lags differ (4-6
hours instead of 2 hours) it seems that the general trend, i.e. a time
shift, has been captured by the proposed BGM model.
The directed edge posterior probability estimates for the circadian
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genes in Arabidopsis thaliana are given in Table 3 (T20) and Table 4
(T28). As explained above, concrete network predictions can be
obtained from these estimates by imposing an arbitrary threshold
on these posterior probability estimates. Furthermore, to illustrate
graphically that the light:dark entrainment has an effect on the
regulatory relationships, an edge posterior probability estimates
scatter plotT20 versusT28 is given in Figure 5. Interestingly, it
appears that the edge posterior probabilities are slightly different
but do no completely differ; especially the edges with the highest
posterior probability (around 1) are almost the same for both time
seriesT20 and T28. The Pearson correlation coefficient is equal
to 0.84. Scatter plots of the directed edge posterior probabilities
obtained by BGM inference versus BGe inference are shown in
Figure 6. It can be seen from the two panels that the posterior
probabilities are correlated and do not differ drastically. The Pearson
correlations are equal to 0.94 (T20) and 0.93 (T28).

3 COMPUTATIONAL COMPLEXITY AND
PERFORMANCE OF THE BGM ALGORITHM

The computational complexity of the proposed BGM algorithm
depends on the number of network nodesN and the number of
observationsm. The computational complexity related toN is the
same as for standard Bayesian network inference based on either
the BGe or the BDe scoring metric. As the number of domain nodes
N increases, convergence and mixing of the MCMC simulations
become poorer, and the posterior distributions become more diffuse.
To deal with the diffuse posteriors, the analysis of networks should
focus on conserved subnetworks and network features, as discussed
in Friedmanet al. (2000). To improve mixing and convergence
of the MCMC simulations, improved and alternative proposal
scheme have been introduced; see Friedman and Koller (2003) and
Grzegorczyk and Husmeier (2008). These aspects have already been
investigated in the literature before, and we therefore do not revisit
them.

The additional complexity of the proposed BGM algorithm is also
related to the data set sizem, as each new data point is associated
with a separate allocation variable, that is a new component of the
allocation vector~V. To investigate how well our model scales up
as m increases, we have also run simulations on larger synthetic
Gaussian data sets withm = 480 data points, and we found that the
computational costs do not increase substantially.
The BGM inference results suggest that the number of components
in the heterogeneous data can be learned more accurately than with
the smaller data set (see Figure 3 in the main paper and Figure 1
in this supplementary paper); however, the network reconstruction
accuracy appears to slightly deteriorate (see Figure 1 and Figure 2 in
the main paper). This finding might be counter-intuitive, as a larger
data set contains more information and should therefore lead to a
better performance. However, our finding is consistent with the fact
that increased data set sizes lead to likelihood landscapes that are
more rugged and, hence, result in increased mixing and convergence
problems; see Figure 7 in Grzegorczyk and Husmeier (2008).
When learning conventional Bayesian networks based on the BGe
and BDe scoring metrics this problem can be addressed, e.g. by
improving the MCMC proposal moves, as reported in Grzegorczyk
and Husmeier (2008). Unfortunately, this approach is not applicable
to the proposed BGM model, as the reassignment of allocation
variables requires a computationally expensive re-computation of

the scores on which the proposal distributions depend. We therefore
have to resort to classical structure MCMC Madigan and York
(1995), which scales up less favourably to larger systems; see the
discussions in Grzegorczyk and Husmeier (2008). This problem can
in principle be alleviated by the development of improved MCMC
sampling schemes – akin to the improvement of MCMC schemes
for conventional Bayesian networks (Grzegorczyk and Husmeier,
2008) – but the practical implementation needs to be left for future
research.

4 GENERAL DISCUSSIONS AND RELATED WORK
Bayesian networks provide an abstract and simplified representation
of regulatory networks and signalling pathways, which is certainly
not appropriate when trying to resolve the detailed structure of
a specific pathway. There is a clear trade-off between model
complexity and inference accuracy/computational complexity.
Bayesian networks based on the BDe and BGe scoring metric
are of a simple form, but allow the marginal likelihood to be
computed analytically. More complex models along the line we
discuss below sacrifice inference accuracy and resort to measures
that are only reliable in the limit of very large data sets, like
the Laplace approximation or, worse, the Bayesian information
criterion BIC (Schwarz, 1978). Computing marginal likelihoods for
even more accurate models based on differential equations have
been attempted, but the computational costs are so high that this
approach is restricted to model selection from a very small set
of candidate pathways (Vyshemirsky and Girolami, 2008). We
therefore hold the view that simpler models, like Bayesian networks
using BGe (Geiger and Heckerman, 1994), still play an important
role in systems biology.

In principle, one could obtain a model that is more flexible
than the proposed BGM method by selecting the components and
allocations for each domain variable separately, and originally
we intended to implement our BGM model along this line. But
unfortunately it turned out that the BGe scoring metric by Geiger
and Heckerman (1994) is not consistent with a model where each
variable has different (independent) breakpoints. E.g. Koet al.
(2007) also apply a mixture of Bayesian networks model to infer
gene regulatory networks from expression data. In fact, the model
of Ko et al. (2007) is more flexible than our BGM model, with
node-specific Gaussian mixture models and, hence, node-specific
breakpoints. However, the inference procedure is less sound in
that the marginal likelihood is intractable. The authors resort to
the Bayesian information criterion BIC for model selection, which
is only a good approximation to the marginal likelihood in the
limit of very large data sets. In more detail: Our BGM model is
based on the BGe scoring metric by Geiger and Heckerman (1994)
so that the (component-wise) precision matrices of the whole
network are taken into consideration when computing local scores.
That is, the BGM model is based on correlations conditional on
the whole domain (network). The approach of Koet al. (2007)
decomposes the whole network into local subnetworks (each
consisting of a single domain node and its parent nodes only),
and the local scores are computed from the precision matrices of
these subnetworks only without taking the dependency structure
of the complete system, that is, the precision matrix of the whole
network, into consideration. The main shortcoming of the approach
of Ko et al. (2007) is that model selection and inference do not use
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BDe BGe BGM

CMV CMV CMV
Irf1 Irf2 Irf3 Irf1 Irf2 Irf3 Irf1 Irf2 Irf3

Irf1 —- 0.89 0.04 Irf1 —- 1.00 0.83 Irf1 —- 1.00 0.84
Irf2 0.63 —- 0.91 Irf2 0.91 —- 0.83 Irf2 0.86 —- 0.40
Irf3 0.33 0.18 —- Irf3 0.98 0.51 —- Irf3 0.86 0.29 —-

IFNγ IFNγ IFNγ

Irf1 Irf2 Irf3 Irf1 Irf2 Irf3 Irf1 Irf2 Irf3
Irf1 —- 0.18 0.67 Irf1 —- 0.75 0.79 Irf1 —- 0.94 0.79
Irf2 0.05 —- 0.03 Irf2 0.34 —- 0.80 Irf2 0.77 —- 0.37
Irf3 0.73 0.02 —- Irf3 0.67 0.44 —- Irf3 0.75 0.30 —-

CMV+IFNγ CMV+IFNγ CMV+IFNγ

Irf1 Irf2 Irf3 Irf1 Irf2 Irf3 Irf1 Irf2 Irf3
Irf1 —- 0.02 0.39 Irf1 —- 0.77 0.80 Irf1 —- 0.80 0.80
Irf2 0.01 —- 0.02 Irf2 0.34 —- 0.37 Irf2 0.44 —- 0.37
Irf3 0.01 0.90 —- Irf3 0.66 0.34 —- Irf3 0.68 0.33 —-

Table 1. Macrophage data: Inferred posterior probabilities of directed edges for each combination of experimental condition (CMV, IFNγ , and
CMV+IFNγ ) and BN inference procedure (BDe, BGe, and BGM). In each of the nine subtables the (i,j)-th cell contains the marginal posterior probability for
an edge from Irfi to Irfj (i, j = 1, . . . , 3).

data CMV IFNγ CMV+IFNγ

BDe 0.67 0.78 0.00
BGe 1.00 0.22 0.56
BGM 1.00 0.78 0.67

Table 2. Macrophage data: AUROC values. For each of the three macrophage data sets the table shows the BDe, BGe and BGM AUROC values computed
from the directed edge relation features. The highest AUROCvalues for each data set are set in bold.

genes LHY CCA1 TOC1 ELF4 ELF3 GI PRR9 PRR5 PRR3

LHY —- 1.00 0.53 0.37 0.43 0.35 0.19 0.15 0.35
CCA1 0.94 —- 0.48 0.36 0.51 0.40 0.32 0.13 0.40
TOC1 0.08 0.15 —- 0.28 0.47 0.09 0.28 0.15 0.33
ELF4 0.16 0.13 0.18 —- 0.25 0.04 0.94 0.19 0.23
ELF3 0.09 0.15 0.08 0.13 —- 0.04 0.53 0.15 0.15
GI 0.99 0.99 0.88 0.48 0.27 —- 0.33 0.97 0.98
PRR9 0.49 0.26 0.20 0.43 0.26 1.00 —- 0.90 0.19
PRR5 0.07 0.09 0.42 0.63 0.22 0.99 0.14 —- 0.18
PRR3 0.11 0.15 0.11 0.14 0.24 0.06 0.17 0.16 —-

Table 3. Arabidopsis thaliana T20 data: Inferred posterior probabilities of directed edges. The estimates were obtained with BGM inference for time
series T20 (10h:10h light:dark entrainment). The (i,j)-th cell contains the marginal posterior probability of an edge from the genein the i-th row to the gene in
the j-th column.

genes LHY CCA1 TOC1 ELF4 ELF3 GI PRR9 PRR5 PRR3

LHY —- 1.00 0.65 0.71 0.39 0.13 0.44 0.23 0.51
CCA1 0.92 —- 0.40 0.39 0.61 0.16 0.35 0.51 0.26
TOC1 0.12 0.06 —- 0.24 0.40 0.10 0.60 0.18 0.28
ELF4 0.09 0.11 0.14 —- 0.23 0.05 0.44 0.08 0.08
ELF3 0.10 0.08 0.10 0.17 —- 0.55 0.53 0.07 0.10
GI 1.00 1.00 0.75 0.63 0.30 —- 0.16 0.89 0.92
PRR9 0.20 0.42 0.12 0.15 0.24 0.99 —- 0.90 0.11
PRR5 0.18 0.13 0.62 0.37 0.24 0.92 0.21 —- 0.65
PRR3 0.31 0.12 0.12 0.17 0.25 0.04 0.13 0.09 —-

Table 4. Arabidopsis thaliana T28 data: Inferred posterior probabilities of directed edges. The estimates were obtained with BGM inference for time
series T28 (14h:14h light:dark entrainment). The (i,j)-th cell contains the marginal posterior probability of an edge from the genein the i-th row to the gene in
the j-th column.
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Fig. 1. Synthetic Gaussian data: Histograms of the number of inferred mixture components. For each considered combination of true components
(1 ≤ KTRUE ≤ 5) and sample sizem a histogram of the number of BGM-inferred components is shown.In each histogram the vertical axes represent
posterior probabilities estimated with MCMC whereby the BGMMCMC trajectories have been merged across the 5 independent replications. From the
histograms it can be seen that the posterior distribution of the number of mixture componentsK inferred with BGM tends to peak at the correct number
(indicated by black bars) forK ≤ 4. Only for the combinationK = 3 andm = 60 the posterior distribution of the number of inferred components wrongly
peaks atK = 2. ForKTRUE = 5 (last row) the posterior distribution of the number of inferred components becomes flat and does not peak at the correct
number of components form = 60 andm = 180.

a proper Bayesian network scoring metric based on the marginal
likelihood, such as BGe or BDe, but the Bayesian information
criterion (BIC). BIC is known to be a crude approximation to
the proper BGe score, which in many practical applications is
strongly over-regularized, especially when the data are sparse.
Additionally, instead of sampling the network structure, the number
of components, and the allocation of the observations from the joint
posterior distribution with Markov chain Monte Carlo (MCMC),
as in our work, the approach proposed in Koet al. (2007) is based
on a heuristic optimisation scheme that fails to take the intrinsic

inference uncertainty into account.

To understand why the marginal likelihood of the BGe scoring
metric (Geiger and Heckerman, 1994) becomes intractable for
the variable-specific change point model, consider the following
example. Let there be three domain nodesX, Y , andZ and the
network structureY ← X → Z whereby the dependencyY ← X

is modelled by one single component, symbolically:~VY (i) = 1 for
all observationsi, and the dependencyX → Z is modelled by two
components, symbolically:~VZ(i) ∈ {1, 2} for all observationsi.
The BGe score of Geiger and Heckerman (1994) is based on the
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Fig. 2. Macrophage data: Gene expression time series of the Interferon regulatory factors. Black symbols: Irf1; grey symbols: Irf2; and white symbols:
Irf3. Concrete allocations were obtained by imposing thresholds on the connectivity matrices, whereby for each condition the threshold was selected such that
an allocation consistent with the trends indicated by the corresponding heat matrix shown in Figure 5 of the main paper was obtained. The different symbols
(triangles, circles, squares) along the time series indicate which observations are then assigned to the same mixture component by the proposed inference
scheme.
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Fig. 3. Macrophage data: Scatter plots for the macrophage data. The figure shows scatter plots of the collected Irf gene expression data. For each condition
(CMV, IFNγ and CMV+IFNγ .) there is a column with three panels showing the scatter plots for the three Irf gene pairs (Irf1 vs. Irf2, Irf1 vs. Irf3, and Irf2 vs.
Irf3). The symbols (rectangles, triangles, and circles) indicate to which component the data points are allocated according to Figure 2. See caption of Figure 2
for more details.
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Fig. 4. Gene expression time series of nine circadian genes in Arabidopsis thaliana. For each of the selected nine circadian clock-regulated genes there
is a plot of two time series. The solid lines refer to the measurements of time seriesT28 (14:14 light:dark entrainment) and the dashed lines refer tothe
measurements of seriesT20 (10:10 light:dark entrainment). It can be clearly seen that varying the entrainment leach to a phase shift of the gene expression
profiles. For most of the circadian genes the dashed line (T28) seems to be shifted by 2h compared to the solid line (T20).

precision matrix of the whole network (see Eq. (11), Eq. (15), and
Eq. (24) in Geiger and Heckerman (1994)). Therefore, when we
compute the local score of nodeY conditional onX, we will have
to (i) consider the precision matrix of the whole network domain
(X, Y , andZ) and (ii) extract the relevant submatrix consisting
of those rows and columns corresponding toX andY . But since
the relationship betweenX and Z is modelled by a mixture of
two components and so depends on~VZ , the precision matrix of the
whole network also depends on the allocation vector~VZ , and the
precision matrix entries of the submatrix corresponding toY andZ

are different for the two components of~VZ . Especially, this implies
that the whole network (X, Y , andZ) does not have a multivariate
Gaussian distribution but must be represented as a mixture of two

multivariate Gaussian distributions.
Consequently, if there are local probability distributions which
are modelled with more than one component, then the precision
matrix of the whole domain has to be computed from a mixture
of multivariate Gaussians. More precisely, it holds: If the
local probability distribution ofXi is modelled according to the
allocation vector~Vi where ~Vi consists ofci different mixture
components (i = 1, . . . n), then the precision matrix of the
whole domain (X1, . . . Xn) consists of up toc =

∏n

i=1
ci

mixture components, and for each of thec different realisations
of (~V1, . . . ~Vn) there is a multivariate Gaussian distribution with a
different precision matrix.
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Fig. 5. Arabidopsis thaliana data. Scatter plot of edge posterior probabilities:T20 (horizontal axis) versusT28 (vertical axis). The Pearson correlation
coefficient is equal to 0.84. The coordinates of all points were randomly slightly perturbed to visualize clusters of points.
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Fig. 6. Arabidopsis thaliana data. Edge posterior probabilities BGe versus BGM. For both time seriesT20 (panel (a)) andT28 (panel (b)) the edge
posterior probabilities of BGM (horizontal axis) have beenplotted against the edge posterior probabilities of BGe (vertical axis). The Pearson correlation
coefficients are equal to 0.94 (T20) and 0.93 (T28). The coordinates of all points were randomly slightly perturbed to visualize clusters of points.

Finally, we note that it has recently come to our attention that
closely related work has been carried out in Lèbre (2008). The main
differences are as follows. The present work has been motivated
by the attempt to find a non-linear generalization of the BGe
model, using a mixture distribution and the allocation sampler.
The regionality, that is, the segmentation of the time series into
consecutive segments has come out of the inference automatically,

that is, it is purely data-driven. The breakpoint model applied in
Lèbre (2008) imposes this structure onto the model a priori. While
this is a useful assumption in most cases, it is more restricted in
terms of modelling non-linear distributions. Also, if the regionality
assumption is valid, it is straightforward to include it as prior
knowledge in our model via a Markovian dependence between
the latent variables. In fact, this approach could be regarded as a
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generalization of the breakpoint model, as discussed in Lehrach
(2007). The second difference is that Lèbre (2008) allows the
model to learn different graphs between different breakpoints, while
in our approach the graph is constrained to remain unchanged.
While this makes the approach of Lèbre (2008) more flexible, it
implies that there is no sharing of information between different
breakpoints. To rephrase this: while the method of Lèbre (2008)
infers the breakpoint structure from the whole data set, it infers
a graph associated with a breakpoint only from the subset of the
data assigned to the respective segment. Note that time series
available for contemporary microarray studies are usually limited
to a few dozen time points. Further decreasing the effective sample
set size will inevitably increase the vagueness of the posterior
distribution. By allowing for certain information sharing between
the segments, our approach alleviates this problem. In other words,
by assuming that the graph remains unchanged, and only allowing
the distributions of the parameters associated with the interactions
to vary between segments, the inference uncertainty is considerably
reduced.
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Lèbre, S. (2008)Analyse de processus stochastiques pour la génomique :étude du
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ABSTRACT
Article: In the article we propose a non-linear and non-homogeneous
generalization of the classical BGe score for Bayesian networks. The
method is based on a mixture model, using latent variables to assign
individual measurements to different classes. The practical inference
follows the Bayesian paradigm and samples the network structure,
the number of classes and the assignment of latent variables from
the posterior distribution with MCMC, using the recently proposed
allocation sampler as an alternative to RJMCMC.
Supplementary material: Due to space restrictions of the article we
provide some additional information as supplementary material. This
supplementary paper on theoretical aspects (T) presents more details
of the mathematical theory. Section 1 gives a detailed overview to
Bayesian network methodology. Section 3 deals with the proposed
BGM model and the corresponding MCMC sampling scheme. The
BGe scoring metric and its straightforward extension to the new BGM
model is discussed in Section 4. Section 5 deals with predictive
probabilities for BGe and BGM. The implementation details of all
applied algorithms and additional figures and tables are available as
a separate supplementary paper on experimental aspects (E).
Availability: This supplementary paper on theoretical aspects (T) is
available from
http://www.bioss.ac.uk/associates/marco/supplement/T.pdf
A separate supplementary paper on experimental aspects (E) with the
implementation details and additional figures and tables is available
from
http://www.bioss.ac.uk/associates/marco/supplement/E.pdf
The data sets used in our study are available from
http://www.bioss.ac.uk/associates/marco/supplement/
Contact: marco@bioss.ac.uk, dirk@bioss.ac.uk

1 BAYESIAN NETWORK METHODOLOGY
This first section of this supplementary paper on theoretical aspects
(T) gives a more detailed introduction to standard Bayesian network
inference. The first subsection describes the Bayesian network

model, the second summarizes the structure MCMC sampling
scheme for Bayesian networks developed by Madigan and York
(1995). Additional information on edge posterior probabilities, ROC
curves and AUROC values is given in the third subsection.

1.1 Bayesian networks
Static Bayesian networks(BNs) are interpretable and flexible
models for representing probabilistic relationships between
interacting variables. At a qualitative level, the graph of a BN
describes the relationships between the domain variables in the
form of conditional independence relations. At a quantitative level,
local relationships between variables are described by conditional
probability distributions. Formally, a BN is defined by a graph
G, a family of conditional probability distributionsF, and their
parameters~q, which together specify a joint distribution over the
domain variables.
The graphG of a BN consists of a set ofN nodes (variables)
X1, ..., XN and a set of directed edges between these nodes. The
directed edgesindicate dependence relations. If there is a directed
edge pointing from nodeXi to nodeXj , thenXi is called aparent
(node) ofXj , andXj is called achild (node) ofXi. The parent
setof nodeXn, symbolicallyπn, is defined as the set of all parent
nodes ofXn, that is, the set of nodes from which an edge points
toXn in G. We say that a nodeXn is orphanedif it has an empty
parent set:πn = ∅. If a nodeXk can be reached by following
a path of directed edges starting at nodeXi, thenXk is called a
descendantof Xi. The structure of a Bayesian network is defined
to be adirected acyclic graph, that is, a directed graph in which
no node can be its own descendant. Graphically this means that
there are no cycles of directed edges (loops) in DAGs. It is due to
the acyclicity that the joint probability distribution in BNs can be
factorised as follows:

P (X1, ..., XN ) =
N
∏

n=1

P (Xn|πn) (1)

c© Oxford University Press 2008. 1
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For further details, see Jensen (1996). Thus, DAGs imply
sets of conditional independence assumptions for BNs, and so
factorisations of the joint probability distribution in which each
node depends on its parent nodes only. But more than one DAG
can imply exactly the same set of conditional independencies,
and if two DAGs assert the same set of conditional independence
assumptions, those DAGs are said to beequivalent. This relation of
graph equivalence imposes a set ofequivalence classesover DAGs.
The DAGs within an equivalence class have the same underlying
undirected graph, but may disagree on the direction of some of
the edges. (Verma and Pearl, 1990) prove that two DAGs are
equivalent if and only if they have the sameskeletonand the same
set ofv-structures. The skeleton of a directed acyclic graph (DAG)
is defined as the undirected graph which results from ignoring
all edge directions. And a v-structure denotes a configuration
Xi → Xn ← Xk of two directed edges converging on the same
nodeXn without an edge betweenXi andXk (Chickering, 1995).
Although Bayesian networks (BNs) are based on DAGs, it is
important to note that not all directed edges in a BN can be
interpreted causally. Like a BN, acausal networkis mathematically
represented by a DAG. However, the edges in a causal network have
a stricter interpretation: the parents of a variable are its immediate
causes. In the presentation of a causal network it is meaningful
to make thecausal Markov assumption(Pearl, 2000): Given the
values of a variable’s immediate causes, it is independent of its
earlier causes. Under this assumption, a causal network can be
interpreted as a BN in that it satisfies the corresponding Markov
independencies. However, the reverse does not hold.
The probability models for BNs we will consider in this paper lead
to the same scores for equivalent DAGs, so that only equivalence
classes can be learnt from data. Chickering (1995) shows that
equivalence classes of DAGs can be uniquely represented using
completed partially directed acyclic graphs(CPDAGs). A CPDAG
contains the same skeleton as the original DAG, but possesses both
directed and undirected edges. Every directed edgeXi → Xj of a
CPDAG denotes that all DAGs of this class contain this edge, while
every undirected edgeXi − Xj in this CPDAG-representation
denotes that some DAGs contain the directed edgeXi → Xj ,
while others contain the oppositely orientated edgeXi ← Xj .
An algorithm that takes as input a DAG, and outputs the CPDAG
representation of the equivalence class to which that DAG belongs,
can be found in (Chickering, 2002).

Stochastic models for Bayesian networks (Friedmanet al.,
2000) specify the distributional formF and the parametersq of
the local probability distributionsP (Xn|πn) (n = 1, ..., N).
They assert a distribution to each domain nodeXn conditional
on its parent setπn, whereby the parent sets are implied through
the underlying DAG. The local probability distributions together
specify the joint probability distribution of all domain variables
P (X1, ..., XN ) (see Eq. (1)). Consequently, given dataD these
parametric models can be used to score DAGsG with respect to
their posterior probabilitiesP (G|D, F, q). We assume that the data
matrixD is of sizeN -by-m and each of them columns corresponds
to an independent realisation of the domainX1, . . . , XN . Di,j is
thej-th observation of thei-th domain nodeXi.

Neglecting the family of probability distributionsF and their
parameters~q, we have for the posterior probabilityP (G|D) of a

DAG G given the data matrixD:

P (G|D) =
P (G,D)

P (D)
=

P (D|G) · P (G)
∑

G⋆∈Ω
P (D|G⋆) · P (G⋆)

, (2)

wherebyP (G) (G ∈ Ω) is the prior probability over the spaceΩ
of all possible DAGs over the domainX1, ..., XN . P (D|G) is the
marginal likelihood, that is the probability of the graphG given the
data matrixD. A commonly used graph priorP (G) (G ∈ Ω) is a
uniform distribution overΩ. Another graph prior is given by:

P (G) =
1

Π

N
∏

n=1

(

N − 1
|πn|

)−1

(3)

whereΠ is a normalization constant, and|πn| is the cardinality
of the parent setπn. The graph prior given in Eq. (3) implicitly
assumes that the cardinalities of the parent sets for each domain
node are uniformly distributed and, hence, includes a penalty for
complex networks (Friedman and Koller, 2003).
There are two major stochastic models for which certain regularity
conditions can be satisfied, so that a closed-form solution can be
derived for the likelihoodP (D|G) by analytical integration. See
Geiger and Heckerman (1994) and Heckerman (1999) for further
details. The posterior probabilityP (G|D) (see Eq. (2)) has a
modular form:

P (G|D) =
1

Zc

N
∏

n=1

exp(ψ[Xn, πn|D]) (4)

Here, Zc is a normalization factor, andψ[Xn, πn|D] are local
scores that are computed from the dataD and depend on the
parent setsπn implied through the DAGG. The local scoresψ[.]
are defined by the employed probability model. The two major
stochastic models, leading to a closed-form solution, are 1) the
linear Gaussian model with a Normal-Wishart distribution as the
conjugate prior (BGe-model), and 2) the multinomial distribution
with a Dirichlet prior (BDe-model). A comparison of these models
in the context of reverse engineering gene regulatory networks can
be found in Friedmanet al. (2000). In this article we focus on an
non-homogeneous extension of the BGe-model. See Geiger and
Heckerman (1994) or Grzegorczyket al. (2008) for more detailed
presentations of the BGe model for Bayesian networks.

When instead ofm independent observations for the domain
X1, . . . , Xm time series data(X1,t, . . . XN,t)t=1,...,m have been
collected,dynamic Bayesian networks(DBNs) can be employed. In
DBNs each edge corresponds to an interaction with a time delay
τ ; e.g. forτ = 1 an edge pointing fromXi to Xj means that the
realisationxj,t of Xj at time pointt is influenced by the realisation
xi,t−1 ofXi at the previous time pointt−1. In DBNs parameters are
tied such that the transition probabilities between time slicest − 1
andt are the same for allt, that is, DBNs are homogeneous Markov
models. Because of the time delay of interactions the acyclicty of
the underlying graphG is not required, and Eq. (1) is replaced by:

P (X1,t, ..., XN,t) =
N
∏

n=1

P (Xn,t|πn,t−1) (5)
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whereπn,t−1 denotes the parent set ofXn at the previous time point
t− 1. Accordingly, the DBN counterpart of Eq. (4) is given by:

P (G|D) =
1

Zc

N
∏

n=1

exp(ψ[Xn,t, πn,t−1|D]) (6)

We note that no realisations for the potential parent nodes of the
domain variablesXi,1 at the first time point (t = 1) are available.
Consequently the first observations forX1,1, . . . , X1,m at time
point t = 1 cannot be included when computing likelihoods for
DBNs. That is, for time series of lengthm the effective sample size
that can be used for the computation of DBN likelihoods is equal to
m− 1.

1.2 Structure MCMC sampling of Bayesian networks
In the context of static Bayesian networks (BNs) Different Markov
chain Monte Carlo (MCMC) methods have been proposed for
sampling directed acyclic graphs (DAGs)G from the posterior
distribution P (G|D) (Madigan and York (1995), Friedman and
Koller (2003), or Grzegorczyk and Husmeier (2008). The structure
MCMC approach of Madigan and York (1995) generates a sample
of DAGsG1, ...,GT from the posterior distribution by a Metropolis
Hastings sampler in the space of DAGs. Given a DAGGi, in a
first step a new DAGGi+1 is proposed with the following proposal
probabilityQ(Gi+1|Gi):

Q(Gi+1|Gi) =

{

1

|N (Gi)|
,Gi+1 ∈ N (Gi)

0 ,Gi+1 /∈ N (Gi)

}

(7)

where N (Gi) denotes theneighbourhoodof Gi, that is, the
collection of all DAGs that can be reached fromGi by deletion,
addition or reversal of one single edge of the current graphGi,
and |N (Gi)| is the cardinality of this collection. We note that the
new graphGi+1 has to be acyclic, so it has to be checked which
edges can be added toGi and which edges can be reversed in
Gi without violating the acyclicity-constraint. In the Metropolis
Hastings algorithm the proposed graphGi+1 is accepted with the
acceptance probability:A(Gi+1|Gi) =min{1, R(Gi+1|Gi)}, where

R(Gi+1|Gi) :=
P (Gi+1|D)

P (Gi|D)
·
Q(Gi|Gi+1)

Q(Gi+1|Gi)
(8)

=
P (D|Gi+1) · P (Gi+1)

P (D|Gi) · P (Gi)
·
|N (Gi)|

|N (Gi+1)|

while the Markov chain is left unchanged, symbolicallyGi+1 := Gi,
if the new graphGi+1 is not accepted.{Gi} is then a Markov chain
in the space of DAGs whose Markov transition kernelT (G̃|G) for a
move fromG to G̃ is given by the product of the proposal probability
and the acceptance probability forG 6= G̃:

T (G̃|G) = Q(G̃|G) ·A(G̃|G) (9)

and
T (G|G) = 1−

∑

G̃∈N (G)

Q(G̃|G) ·A(G̃|G).

Per construction it is guaranteed that the Markov transition kernel
satisfies the equation of detailed balance:

P (G̃|D)

P (G|D)
=
T (G̃|G)

T (G|G̃)
(10)

Under ergodicity, that is a sufficient condition for the Markov chain
{Gi} to converge, the posterior distributionP (G|D) is the stationary
distribution:

P (G̃|D) =
∑

G

T (G̃|G) · P (G̃|D). (11)

The structure MCMC sampling scheme for static Bayesian
networks (BNs) can be straightforwardly modified in order to
sample dynamic Bayesian networks (DBNs). For (static) BNs the
neighbourhoodof a DAG G in Eq. (7) is defined as the collection
of all DAGs that can be reached fromG by deletion, addition
or reversal of one single edge. For DBNs we define that the
neighbourhood of a (not-necessarily acyclic) directed graph is the
collection of all (not necessarily acyclic) directed graphs that can be
reached fromG either by deletion or by addition of one single edge.

A reasonable approach adopted in most Bayesian network
applications is to impose a limit on the cardinality of the parent
sets. This limit is referred to as thefan-in. The practical advantage
of the restriction on the maximum number of edges converging
on a node is a reduction of the computational complexity, which
improves the convergence. Fan-in restrictions can be justified in the
context of biological expression data, as many experimental results
have shown that the expression of a gene is usually controlled by
a comparatively small number of active regulator genes, while on
the other hand regulator-genes seem to be nearly unrestricted in the
number of genes they regulate. The imputation of a fan-in restriction
leads to a further reduction of the graph’s neighbourhoods: Graphs
that contain nodes with too many parents, that is more than the fan-
in value, have to be removed from the respective neighbourhoods.

1.3 Posterior probability of edges and AUROC
diagnostics

Structure MCMC can be used to generate a graph sampleG1, ...,GT ,
and usually the next step is to compute posterior probabilities of
edges. We focus onundirected edgesfor independent data (BNs)
and directed edgesfor time-dependent (DBN) data. There is an
undirected edge betweenXi andXj (i < j) in G if it possesses
either the edgeXi → Xj or the edgeXi ← Xj , and there is a
directed edge fromXi toXj (i 6= j) in the graphG if it possesses
the edgeXi → Xj . An estimator for the posterior probabilities
of an edgeF is given by the fraction of graphs in the sample that
contain the edge of interest:

P̂ (F |D) =
1

T

T
∑

t=1

IF (Gt) (12)

whereIF is a binary indicator variable over the space of graphs,
which is1 if the edgeF is present in the DAG, and0 otherwise.

When the true graph or at least a gold-standard graph for the
domain is known, the concept ofROC curvesandAUROC values
can be used to evaluate the network reconstruction accuracy of the
Bayesian network inference. We assume thateij = 1 indicates that
there is an (directed/undirected) edge betweenXi andXj in the true
graph, whileeij = 0 indicates that this edge is not given in the true
graph. Bayesian network inference outputs a posterior probability
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estimate ̂P (Fij |D) for each edgeeij .

Let ǫ(θ) =
{

eij | ̂P (Fij |D) > θ
}

denote the set of all edges

whose posterior probabilitiy estimates exceed a given threshold
θ. Given θ the number of true positive (TP), false positive (FP),
and false negative (FN) edge (relation) feature findings can be
counted, and thesensitivityS = TP/(TP + FN) and theinverse
specificityI = FP/(TN + FP ) can be computed. But rather than
selecting an arbitrary value for the thresholdθ, this procedure can be
repeated for several values ofθ and the ensuing sensitivities can be
plotted against the corresponding inverse specificities. This gives the
receiver operator charcteristic(ROC) curve. A quantitative measure
for the learning performance can be obtained by integrating the ROC
curve so as to obtain the area under the ROC curve, which is usually
referred to as AUROC1 value. We note that larger AUROC1 values
indicate a better learning performance, whereby 1 is an upper limit
and corresponds to a perfect estimator, while 0.5 corresponds to a
random estimator.
An alternative and more intuitive criteria is given by(TP |FP = 5)
counts: For each MCMC output a thresholdψ is imposed on the
inferred edge posterior probabilities such that 5 false positive (FP)
edges are extracted and the corresponding number of true positive
(TP) edges, symbolically(TP |FP = 5), exceeding the threshold
ψ, is counted (Werhliet al., 2006).

2 THE GAUSSIAN MIXTURE APPROACH FOR
BAYESIAN NETWORKS

In this section we motivate the proposed Gaussian mixture approach
for Bayesian networks (BGM). The BGM model is based on the
idea that the joint probability distributionP (X1, . . . , XN ) can be
replaced by a mixture distribution:

P (X1, . . . , XN |K, ~q) =
K
∑

k=1

λkP (X1, . . . , XN |~qk) (13)

whose number of mixture componentsK, mixture weights~λ =
(λ1, . . . , λK)T , and mixture components’ parameters in the vector

~q =
(

~qT
1 , . . . , ~q

T
k

)T
are regarded as unknowns.

The local probability distributionsP (Xn|πn) in Eq. (1) can then
be factorised accordingly, and we obtain:

P (X1, . . . , XN |K, ~q) =
K
∑

k=1

λk

N
∏

n=1

P (Xn|πn, ~qk) (14)

Moreover, we assume that independent priors can be assigned to the
parameters in~q:

P (q|K, ~φ) =
K
∏

k=1

P (~qk|~φk) (15)

where ~φk is the set of hyperparameters for the prior distribution
of the parameters~qk of the k-th mixture component, and~φ =
(

~φT
1 , . . . , ~φ

T
K

)T

.

In classical Bayesian network approaches the marginal likelihood
of a data setD given a graphG is the integral over the parameter

space:

P (D|G) =

∫

P (D, ~q|G)d~q (16)

=

∫

P (D|~q,G)P (~q|G)d~q (17)

and a closed-form solution for the BDe and BGe model
can be derived under two fairly weak assumptions.Parameter
independencemeans that the prior distributionP (~q|G) of the
unknown parameters~q can be factorised into a product ofN
subsets of parameters~q(n) each associated with a local probability
distribution:

P (~q|G) =
N
∏

n=1

P (~q(n)|G) (18)

whereby ~q(n) consists of those parameters required for
parameterising the local probability distributionXn given graphG.

Parameter modularitymeans that the probability of the parameter
subset~qn in the local probability distributionP (~q(n)|G) depends on
the parent variablesπn of Xn in G only. That is, forn = 1, . . . , N
it holds:

P (~q(n)|G) = P (~q(n)|πn) (19)

LetD(n, .) denote the observations of then-th domain nodeXn

in the dataD, andD(πn, .) denotes the observations ofXn’s parent
nodesπn in D. Under the assumption of parameter independence
the likelihood can be factorised according to Eq. (1):

P (D|G, ~q) =

N
∏

n=1

P (Xn = D(n, .)|πn = D(πn, .), ~q(n)) (20)

Inserting Eq. (18), Eq. (19), and Eq. (20) in Eq. (16) yields:

P (D|G) =

N
∏

n=1

∫

P (Xn = D(n, .)|~qn, πn = D(πn, .))P (~q(n)|πn)d~q(n)

This can be straightforwardly extended to the BGM model
when the assumptions of parameter independence and parameter
modularity are extended with respect to a mixture model approach.
Fork = 1, . . .K it can be assumed that:

P (~qk|G) =
N
∏

n=1

P (~qk,(n)|G) (21)

and
P (~qk,(n)|G) = P (~qk,(n)|πn) (22)

where ~qk,(n) consists of those parameters required for
parameterising the local probability distribution ofXn given
a graphG, in which the parent set ofXn is πn, in thek-th mixture
distribution.

For the Gaussian mixture model the likelihood then factorises as
follows:

P (D|G,K, ~q) =

K
∑

k=1

λk

N
∏

n=1

P (Xn = D(n, .)|πn = D(πn, .), ~qk,(n))

(23)
what in turn can be interpreted as a mixture of Bayesian network
BGe likelihoods (see Eq. (20)) where~qk =

(

~qT
k,(1), . . . , ~q

T
k,(n)

)T

is the parameter vector associated with thek-th Bayesian network
model in the mixture distribution.
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3 GAUSSIAN MIXTURE ALLOCATION MCMC
INFERENCE

The third section of this supplementary paper on theoretical
aspects (T) deals with the novel non-linear and non-homogeneous
generalization of the classical BGe score for Bayesian networks.
Gaussian mixture allocation MCMC inference (BGM) is based
on a mixture model, using latent variables to assign individual
measurements (observations of the domian) to different classes
(mixture components). The practical inference follows the Bayesian
paradigm and samples the graph structure, the number of classes
and the assignment of latent variables from the posterior distribution
with MCMC, using the recently proposed allocation sampler
(Nobile and Fearnside, 2007) as an alternative to RJMCMC. In
the first subsection we present the new BGM model. Subsequently,
in the second subsection we describe the BGM sampling scheme
in detail. Finally, in the third subsection we discuss all different
MCMC move types in detail.

3.1 Gaussian mixture Bayesian network model
We assume that we have eitherm independent and identically
distributed (iid) observations (BNs) orm time dependent
observations with a homogeneous first-order Markovian
dependence structure (DBNs) for the variablesX1, . . . XN . This
gives a data set matrix of sizeN -by-m whereD.,j (j = 1, . . . ,m)
is thej-th observation of theN nodes. The allocation vector~V of
sizem defines an allocation of them observations toK mixture
components:~V(j) = k means that thej-th observation is allocated

to thek-th component.D(~V,k) denotes the data subset consisting of
all observations allocated to thek-th component by~V (1 ≤ k ≤ K).
We assume that the joint posterior probability of a graphG, an
allocation vector~V, andK mixture components can be factorised
as follows:

P (G, ~V,K|D) =
P (G, ~V,K,D)

P (D)
∝ P (G, ~V,K,D) (24)

= P (K) · P (~V|K) · P (G) · P (D|G, ~V,K)

where

P (D|G, ~V,K) =
K
∏

k=1

P (D(~V,k)|G) (25)

In Eq. (25) the likelihood termsP (D(~V,k)|G) for the data subsets

D(~V,k) given the same graphG can be computed independently
with the BGe scoring metric (Geiger and Heckerman, 1994). If

no observation is allocated to thek-th component (D(~V,k) = ∅),

P (D(~V,k)|G) is equal to 1. Following Nobile and Fearnside (2007)
we assume as prior onK the Poisson distribution with parameter
λ = 1 restricted to1 ≤ K ≤ KMAX and that the probability
distribution of the allocation vector~V conditional onK is given by:

P (~V = ~v|K, p) =

K
∏

k=1

p
nk

k (26)

where~p = (p1, . . . , pK) with
∑K

k=1
pk = 1 are the non-negative

mixture weights, andnk is the number of observations allocated
to the k-th mixture component by~V. The prior on the mixture
weights~p = (p1, . . . , pK)T is chosen to be a Dirichlet distribution

Dir(α1, . . . , αK) with hyperparameters~α = (α1, . . . αK)T so
that the posterior probability of~V conditional onK is given by
Dir(n1 + α1, . . . , nK + αK):

P (~V|K) =

∫

d~pP (~V = ~v|K, ~p) · P (~p)

=
Γ(α0)

Γ(α0 +m)
·
K
∏

k=1

Γ(αk + nk)

Γ(αk)

whereα0 = α1 + . . .+ αK.

We know that in DBNs the variables at time pointt − 1 are
potential parent nodes of the variables a time pointt. And we know
that the effective number of observations (sample size) for dynamic
Bayesian networks is therefore equal tom − 1, as no observations
for the potential parent nodes of the domain variables at time point
t = 1 are available. Bearing this in mind, we interpret the allocation
vector ~V for DBNs as follows: Fort = 1, . . . ,m − 1, ~V(t) = k

means that the domain variablesXi,t+1 at time pointt + 1, whose
potential parent nodes are the domain variablesX1,t, . . . , XN,t at
time point t, are allocated to thek-th mixture component. From
this point of view them-th (last) entry of the allocation vector is
redundant and can be excluded from all operations that may change
its value. Therefore, for the remainder of this paper we assume that
the length of the allocation vectors~V are decreased by 1 (m − 1
instead ofm) when they correspond to dynamic Bayesian network
(DBN) models.

3.2 MCMC inference
The new Gaussian mixture Allocation MCMC sampling scheme
(BGM) generates a sample from the joint posterior distribution
P (G,K, ~V|D) given in Eq. (24) and comprises five different types
of moves in the state-space[G,K, ~V]. The first move type is a
classical structure MCMC single edge operation on the graphG
while the number of componentsK and the allocation vector~V are
left unchanged. According to Eq. (7) a new graphG̃ is proposed,
and the new state[G̃,K, ~V] is accepted according to Eq (8) where
the likelihood termsP (D|G) in Eq. (8) have to be replaced by
P (D|G,K, ~V) terms given in Eq. (25). The four other move types
are adapted from Nobile and Fearnside (2007) and operate on~V
or on K and ~V. If there areK > 2 mixture components, then
moves of the type M1 and M2 can be used to re-allocate some
observations from one componentk to another onẽk. That is,
a new allocation vector~V∗ is proposed whileG andK are left
unchanged. The EA move type changesK and~V. An ejection EA
move proposes to increase the number of mixture components by
1 and simultaneously tries to re-allocate some observations to fill
the new component. More precisely, it randomly selects a mixture
component and tries to re-allocate some of its observations to the
newly proposed componentK + 1 while G is left unchanged.
Absorption EA moves are complementary to ejection EA moves and
decrease the number of mixture components by1. An EA absorption
move randomly selects two mixture components and deletes one
of them after having re-allocated all its observations to the other
component. The acceptance probabilities for M1, M2, EA ejection,
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and EA absorption moves are of the same functional form:

A =

{

1,
P (~V∗|K∗)

P (~V|K)
·
P (D|G, ~V∗,K∗)

P (D|G, ~V,K)
·
Q(~V∗|~V)

Q(~V|~V∗)
·
P (K∗)

P (K)

}

(27)
where the likelihood terms have been specified in Eq. (25), the
proposal probabilitiesQ(.|.) depend on the move type (M1, M2,
EA), andK∗ = K for M1 and M2 moves, andK∗ ∈ K − 1,K + 1
for EA moves. Finally, the Gibbs move re-allocates only one single
observation by sampling its new allocation from the coressponding
Boltzmann distribution (see Nobile and Fearnside (2007)) while
leavingK and~V unchanged. The next subsection discusses all BGM
moves in detail.

3.3 Moves for BGM in detail
Before the MCMC simulation is started, probabilitiespi (i =
1, . . . , 5) with p1+ . . .+p5 = 1 must be predefined with which one
of these move types (structure, M1, M2, Gibbs, EA) is selected. The
classical structure MCMC move type (Madigan and York (1995))
changes the graphG and leaves the number of componentsK
and the allocation vector~V unchanged. The other move types are
immediately adopted from Nobile and Fearnside (2007).

3.3.1 Structure MCMC Move on the graphG: The first move
type is a standard structure MCMC move in the graph space. It
proposes to change the current graphG by adding, deleting or
reversing a single edge as explained in detail in Section 1. The

acceptance probability for a move from
[

G,K, ~V
]

to [G̃,K, ~V] is

given by:A =min{1, R} where

R =
P (G̃,K, ~V|D)

P (G,K, ~V|D)
·
Q(G|G̃)

Q(G̃|G)
(28)

=
P (K) · P (~V|K) · P (G̃) · P (D|G̃, ~V,K)

P (K) · P (~V|K) · P (G) · P (D|G, ~V,K)
·
Q(G|G̃)

Q(G̃|G)

=
P (G̃)

P (G)
·
K
∏

k=1

P (D(~V,k)|G̃)

P (D(~V,k)|G)
·
|N (G)|

|N (G̃)|

whereQ(G|G̃) andQ(G̃|G) are the proposal probabilities for moves
from G̃ to G and vice-versa,N (G) and N (G̃) are the sets of
neighbour graphs ofG andG̃, and Eq. (25) was used for factorising

the likelihoodsP (D(~V,k)|G̃) andP (D(~V,k)|G).

3.3.2 Gibbs Move on the allocation vector~V: If there is one
component only, symbolicallyK = 1, select another move type.
Otherwise randomly select an observationi among them available
and determine to which componentk (1 ≤ k ≤ K) this observation
currently belongs. For each mixture componentk̃ = 1, . . . ,K
replace thei-th entry of the allocation vector~V by component̃k
to obtain~V(i ← k̃) (k̃ = 1, . . . ,K). We note that~V(i ← k) is
equal to the current allocation vector~V. Subsequently, sample the
new allocation vector~V∗ from the full conditional distribution: For
k̃ = 1, . . . ,K:

P (~V∗ = ~V(i← k̃)) :=
P (G, ~V(i← k̃),K|D)

∑K
k∗=1

P (G, ~V(i← k∗),K|D)
(29)

whereby it can be shown that the ratio on the right is equal to:

P (~V(i← k̃)|K) ·
∏

j∈k,k̃ P (D(~V(i←k̃,j)|G)
∑K

k∗=1

{

P (~V(i← k∗)|K) ·
∏

j∈k,k∗ P (D(~V(i←k∗),j)|G)
}

See Nobile and Fearnside (2007) for further details on this
systematic sweep Gibbs move.

3.3.3 The M1 Move on the allocation vector~V: If there is one
component only, symbolicallyK = 1, select a different type
of move. Otherwise randomly select two mixture componentsk

and k̃ among theK available. Draw a random number̃p from a
Beta distribution whose parameters are equal to the corresponding
hyperparametersαk andαk̃ of the Dirichlet prior on the mixture
weights. Re-allocating each observation currently belonging to the
k-th or k̃-th component to componentk with probability p̃ or
to component̃k with probability 1 − p̃ gives the new allocation
vector~V∗. Nobile and Fearnside (2007) show that for M1 proposal
probabilities holds:

Q(~V∗|~V)

Q(~V|~V∗)
=

{

P (~V∗|K)

P (~V|K)

}−1

so that the corresponding terms in Eq. (27) cancel out. Furthermore,
as the number of componentsK is not changed either, all that

remains to compute is the likelihood ratio:P (D|G,~V∗,K)

P (D|G,~V,K)
. For M1

moves all except thek-th and thek̃-th factor cancel out from the
ratio when the likelihoods are factorised according to Eq. (25).
Hence the acceptance probability for an M1 move from[G,K, ~V]
to [G,K, ~V∗] is given by:

A = min

{

1,
P (D(~V∗,k)|G)

P (D(~V,k)|G)
·
P (D(~V∗,k̃)|G)

P (D(~V,k̃)|G)

}

(30)

See Nobile and Fearnside (2007) for further details on the M1 move.

3.3.4 The M2 Move on the allocation vector~V: If there is one
component only, symbolicallyK = 1, select a different move
type. Otherwise randomly select two mixture componentsk and
k̃ among theK available and then randomly select a group of
observations allocated to componentk and attempt to re-allocate
them to component̃k. If the k-th component is empty the move
fails outright. Otherwise draw a random numberu from a uniform
distribution on1, . . . , nk wherenk is the number of observation
allocated to thek-th component. Subsequently, randomly selectu

observations from thenk in componentk and allocate the selected
observations to componentk̃ to obtain the new allocation vector~V∗.
AsK is not changed and all except thek-th and thẽk-th factor cancel
out from the ratio when the likelihoods are factorised according to
Eq. (25), the acceptance probability for an M2 move from[G,K, ~V]
to [G,K, ~V∗] is given by:

A =

{

1,
P (~V∗|K)

P (~V|K)
·

∏

j∈k,k̃ P (D(~V∗,j)|G)
∏

j∈k,k̃ P (D(~V,j)|G)
·
Q(~V∗|~V)

Q(~V|~V∗)

}

(31)

6



Supplementary paper on theoretical details (T)

Nobile and Fearnside (2007) show that for the proposal
probability ratio holds:

Q(~V∗|~V)

Q(~V|~V∗)
=

nk

nk̃ + u
·

nk! · nk̃!

(nk − u)! · (nk̃ + u)!
(32)

wherenk andnk̃ are the numbers of observations allocated to the
k-th andk̃-th component by~V. See Nobile and Fearnside (2007) for
further details on the M2 move.

3.3.5 EA (ejection/absorption) moves on the number of
componentsK and the allocation vector~V: If there is only
one component, symbolicallyK = 1, then an ejection move has to
be performed. If the maximal number of components is currently
given, symbolicallyK = KMAX , then an absorption move has to
be performed. If1 < K < KMAX then perform an ejection move
with probability 0.5 and otherwise an absorption move.

The ejection move
Randomly select a mixture componentk (1 ≤ k < K) as
the ejecting component. Make a drawpE from a Beta(a, a)
distribution and re-allocate each observation currently allocated to
componentk in the vector~V with probabilitypE to a new (rejected)
component with labelK + 1. Subsequently swap the labels of the
new (rejected) mixture componentK + 1 with a randomly choosen
mixture component label̃k including the labelK + 1 of the ejected
component itself (1 ≤ k̃ ≤ K+1) to obtain the allocation vector~V∗.
Nobile and Fearnside (2007) show that the acceptance probability
for an EA ejection move from[G,K, ~V] to [G,K∗, ~V∗] is given by
A = {1, R} where:

R =
P (~V∗|K∗)

P (~V|K)
·
P (D|G, ~V∗,K∗)

P (D|G, ~V,K)
·
Q([~V∗,K∗]|[~V,K])

Q([~V,K]|[~V∗,K∗])
·
P (K∗)

P (K)

andK∗ = K + 1.
Nobile and Fearnside (2007) show that for the ratio of the

proposal probabilities holds:

Q([~V∗,K]|[~V,K])

Q([~V,K]|[~V∗,K∗])
= pE ·

Γ(a)2

Γ(2a)
·

Γ(2a+ nk)

Γ(a+ n∗w)Γ(a+ n∗k)

wherew = k̃ if k̃ 6= k, andw = K + 1 if k̃ = k, nk is the
number of observations allocated to thek-th component in~V, n∗w
andn∗k are the numbers of observations allocated to thew-th and
k-th component by~V∗. Furthermore, it holds:pE = 0.5 if K = 1,
pE = 2 if K = KMAX − 1, andpE = 1 otherwise. For the
likelihood ratio holds:

P (D|G, ~V∗,K∗)

P (D|G, ~V,K)
=
P (D(~V∗,k)|G) · P (D(~V∗,w)|G)

P (D(~V,k)|G)

wherew = k̃ if k̃ 6= k, andw = K+ 1 if k̃ = k. Following Nobile
and Fearnside (2007) the parametera of theBeta(a, a) distribution
can be selected by numerically solving the following equation:

Γ(2a)

Γ(a)
·

Γ(a+ nk)

Γ(2a+ nk)
= 0.1

whereby a lookup table was used in our BGM implementation. See
Nobile and Fearnside (2007) for further details.

The absorption move
Randomly select a mixture componentk (1 ≤ k ≤ K) as the
absorbing component and another componentk̃ (1 ≤ k̃ ≤ K
with k̃ 6= k) as the disappearing component. Re-allocate all
observations currently allocated to the disappearing componentk̃

by ~V to componentk to obtain the new allocation vector~V∗.
Then delete the (empty) componentk̃ to obtain the new number of
componentsK∗ = K − 1.

Nobile and Fearnside (2007) show that the acceptance probability
for an EA absorption move from[G,K, ~V] to [G,K∗, ~V∗] is given by
A = {1, R} where:

R =
P (~V∗|K∗)

P (~V|K)
·
P (D|G, ~V∗,K∗)

P (D|G, ~V,K)
·
Q([~V∗,K∗]|[~V,K])

Q([~V,K]|[~V∗,K∗])
·
P (K∗)

P (K)

andK∗ = K − 1.
Nobile and Fearnside (2007) show that for the ratio of the

proposal probabilities holds:

Q([~V∗,K]|[~V,K])

Q([~V,K]|[~V∗,K∗])
= pA ·

Γ(2a)

Γ(a)2
·
Γ(a+ nk̃)Γ(a+ nk)

Γ(2a+ n∗k)

where n∗k is the number of observations allocated to thek-th
component in~V∗, nk and nk̃ are the numbers of observations
allocated to thek-th and k̃-th component by~V. Furthermore, it
holds:pA = 0.5 if K = KMAX , pA = 2 if K = 2, andpA = 1
otherwise. For the likelihood ratio holds:

P (D|G, ~V∗,K∗)

P (D|G, ~V,K)
=

P (D(~V∗,k)|G)

P (D(~V,k)|G) · P (D(~V,k̃)|G)

4 BGE SCORE AND EXTENSION TO BGM
This section deals with the standard BGe scoring metric (Bayesian
metric for Gaussian networks having score equivalence) for
Bayesian networks. The first subsection focuses on BGe for
static data (independent observations of the domain) and dynamic
data (time series of the domain). The formula for the closed-
form solution of the marginal likelihood are given. In the second
subsection we explain how to expand BGe to the proposed BGM
model and provide all necessary formula.

4.1 BGe
Given a data setD withm observations of the domainX1, . . . , XN ,
let Di,j denote thej-th observation of thei-th domain nodeXi,
and letD.,j = (D1,j , . . . ,DN,j)

T denote thej-th observation
vector of the domain. The BGe model (Geiger and Heckerman
(1994)) assumes that the set of observation vectorsD.,j (j =
1, . . . ,m) is a random sample from a multivariate Gaussian normal
distribution N (~µ,Σ) with an unknown mean vector~µ and an
unknown covariance matrixΣ. The prior joint distribution of~µ and
W = Σ−1 is supposed to be the normal-Wishart distribution, that is,
the conditional distribution of~µ givenW isN (~µ0, v ·W ) such that
v > 0, and the marginal distribution ofW is a Wishart distribution
with α > N + 1 degrees of freedom and precision matrixT0,
denotedW(α, T0). The conditionα > N + 1 ensures that the
second moments of the posterior distribution are finite (see also
Eq. (26) in Geiger and Heckerman (1994)). Geiger and Heckerman
(1994) show that the likelihood (score)P (D|G) of the dataD given
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a graphG can then - under fairly weak conditions - be computed as
follows: We define:

TD := T0 + SD +
vm

v +m
(~µ0 −D)(~µ0 −D)T (33)

where

D :=
1

m

m
∑

j=1

D.,j (34)

is the mean of them observation vectors and

SD :=
m
∑

j=1

(D.,j −D) · (D.,j −D)T (35)

Furthermore, we set:

c(n, α) :=

{

2α·n/2 · πn·(n−1)/4 ·

n
∏

i=1

Γ(
α+ 1− i

2
)

}−1

(36)

The likelihood can then be computed as follows (Geiger and
Heckerman (1994)):

P (D|G) =
N
∏

i=1

P (D{Xi,πi}|GF ({Xi, πi})

P (D{πi}|GF (πi))
(37)

whereXi is thei-th domain variable,πi is the parent set of thei-
th domain variableXi in the graphG, D{Xi,πi} andD{πi} are the
data submatrices corresponding to the observations for the domain
variables in the sets{Xi, πi} and{πi} only, andGF ({Xi, πi}) and
GF (πi) correspond to so calledfull graphs for the domain subsets
{Xi, πi} and {πi}, that is, to subgraphs with maximal number
of edges so that the subgraphs do not impose any independency
restrictions on the variables.
The likelihood of the data subsetD{S} ⊂ D corresponding to the
m observations of then-dimensional subsetS ⊂ {X1, . . . , XN}
of theN domain variables given a full graphGF (S) for the sub-
domainS can be computed as follows (Geiger and Heckerman
(1994)):

P (DS |GF (S)) = (2π)−
n·m

2 ·

{

v

v +m

}n/2

·
c(n, α)

c(n, α+m)

·det(TS
0 )

α

2 · det(TS
D)−

α+m

2

where T0, α, and v are hyperparameters that have to be
specified, anddet(TS

0 ) anddet(TS
D) denote the determinants of the

submatricesTS
0 andTS

D consisting only of those rows and columns
that correspond to variables in the subsetS. TD was defined in
Eq. (33), andc(n, α) and c(n, α + m) can be computed with
Eq. (36).

When (instead of independent observations) time series data
(X1,t, . . . XN,t)t=1,...,m have been collected for the domain,
dynamic Bayesian networks (DBNs) can be employed. In DBNs
each edge corresponds to an interaction with a time delayτ ; e.g. for
τ = 1 an edge pointing fromXi to Xj means that the realisation
xj,t of Xj at time pointt is influenced by the realisationxi,t−1

of Xi at the previous time pointt − 1. This can be taken into

consideration in the context of BGe by building new matrices from
the original data matrix of sizeN -by-m:

D =











D1,1 D1,2 . . . D1,m−1 D1,m

D2,1 D2,2 . . . D2,m−1 D2,m

...
...

...
...

...
DN,1 DN,2 . . . DN,m−1 DN,m











(38)

We build the following matrices of size(N + 1)-by-(m− 1):

D(i) =















D1,1 D1,2 . . . D1,m−1

D2,1 D2,2 . . . D2,m−1

...
...

...
...

DN,1 DN,2 . . . DN,m−1

Di,2 Di,3 . . . Di,m















(39)

i = 1, . . . , N . That is, we obtainD(i) by deleting the last column
of D and adding the row(Di,2, . . . ,Di,m), i.e. thei-th row ofD
shifted leftwards by 1, as the(N + 1)-th row. For convenience, we
identify the(N + 1)-th row with a new domain variableXN+1.

Finally, we replace Eq. (37) by:

P (D|G) =

N
∏

i=1

P (D(i){XN+1,πi}|GF ({XN+1, πi})

P (D(i){πi}|GF (πi))
(40)

4.2 BGM
The results of the last subsection can be straightforwardly extended
to the BGM model by factorising the likelihoodPBGM (D|G, ~V,K)
according to Eq. (25). The (static) BGM counterpart of Eq. (37) is
given by:

P (D|G, ~V,K) =
K
∏

k=1

N
∏

i=1

P (D(~V,k),{Xi,πi}|GF ({Xi, πi})

P (D(~V,k),{πi}|GF (πi))
(41)

whereD̃(~V,k),S is the data subset ofD which is restricted to those
rows that correspond to variables inS and to those columns that
have been assigned to componentk by the allocation vector~V.

The (dynamic) BGM counterpart of Eq. (40) is given by:

P (D|G, ~V,K) =
K
∏

k=1

N
∏

i=1

P (D(i)(
~V,k),{XN+1,πi}|GF ({XN+1, πi})

P (D(i)(~V,k),{πi}|GF (πi))
(42)

whereD(i)(
~V,k),S is the data subset ofD(i) which is restricted to

those rows that correspond to variables inS and to those columns
that have been assigned to componentk by the allocation vector~V.

5 PREDICTIVE PROBABILITIES
In this section we describe how to compute predictive probabilities
for Bayesian networks. The first subsection deals with BGe, and the
second subsection fosuses on the novel BGM model. Finally, in the
third subsection we give a brief summary of error propagation.

5.1 Predictive probabilities for BGe
We assume that we have a training data setD of sizeN -by-m and
an independent test data setD̃ of sizeN -by-m̃ for the domain
X1, . . . , XN . As before,Di,j and D̃i,j correspond to thej-th
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observation of thei-th domain nodeXi in D and D̃ respectively.
We merge both data sets row-wise to obtain a new data setD∗ of
sizeN -by-(m+ m̃), and we define:

SD,D∗ :=
m
∑

j=1

(D.,j−D∗)·(D.,j−D∗)
T +

m̃
∑

j=1

(D̃.j−D∗)·(D̃.j−D∗)
T

(43)
where

D∗ =
1

m+ m̃

(

m
∑

i=1

D.,j +

m̃
∑

i=1

D̃.j

)

(44)

Let S ⊂ {X1, . . . , XN} denote ann-dimensional subset
of the N domain variables. The predictive probabilityP :=
P (D̃{S}|D{S},GF (S)) for the data subset̃D{S} ⊂ D̃ conditional
on the subsetD{S} ⊂ D and a full graphGF (S) for the sub-domain
S can then be factorised using Eq. (15) of Geiger and Heckerman
(1994):

P =

m̃
∏

j=1

P (D̃
{S}
.j |D̃

{S}
.1 , . . . , D̃

{S}
.j−1

,D
{S}
.1 , . . . ,D{S}.m ,GF (S))

(45)
where D{S}.,j and D̃{S}.,j denote thej-th observation of then-

dimensional sub-domainS in D andD̃ respectively.
And in analogy to Eq. (15) in Geiger and Heckerman (1994) it can
be derived:

P = (2π)−
n·m̃

2 ·

(

v +m

v +m+ m̃

)n/2

·
c(n, α+m)

c(n, α+m+ m̃)

·det(TS
D)

α+m

2 · det(TS

D,D̃)−
α+m+m̃

2

(46)

whereα andv are hyperparameters that have to be specified,TS
D

is the submatrix ofTD (see Eq. (33)) imposed by the subsetS of
the domain variables, that is, the submatrix consisting only of those
rows and columns that correspond to variables inS. c(n, α+m) and
c(n, α+m+m̃) can be computed from Eq. (36).TD,D̃ is given by:

TD,D̃ := T0 +SD,D̃+
v · (m+ m̃)

v +m+ m̃
·(~µ0−D∗)(~µ0−D∗)

T (47)

andTS

D,D̃
is the submatrix ofTD,D̃ imposed by the subsetS of the

domain variables. That is the submatrix consisting only of those
rows and columns that correspond to variables inS.

Predictive probabilitiesP (D̃|D) can be computed for static and
dynamic Bayesian networks with the BGe scoring metric. Here we
focus on the predictive distribution for dynamic Bayesian networks
(DBNs), and we show that they can be estimated from a sample
{G1, . . . ,GT } approximately drawn from the posterior distribution
P (G|D) with MCMC.
As before, denote byG the graph, and let~q denote the vector of
parameters associated withG. We get the following expression for
the predictive distribution:

P (D̃|D) =
∑

G

∫

d~qP (D|G, ~q) · P (G, ~q|D) (48)

A possible approach is to approximately sample graphs{Gi} and
{~qi} from the posterior distributionP (G, ~q|D) with MCMC and to
approximate the integral in Eq. (48) by a sum over this sample. A
better method is to use the expansionP (G, ~q|D) = P (~q|G,D) ·
P (G|D) and draw on the fact that

Ψ(G, D̃) =

∫

d~qP (D̃|G, ~q) · P (~q|G,D) (49)

can be calculated analytically. Inserting Eq. (49) in Eq. (48) yields:

P (D̃|D) =
∑

G

Ψ(G, D̃) · P (G|D) (50)

which in practice is computed from a sample{G1, . . . ,GT }
approximately drawn from the posterior distributionP (G|D) with
MCMC:

P (D̃|D) =
1

T

T
∑

i=1

Ψ(Gi, D̃) (51)

Consequently, an estimator for the predictive probability is given
by:

P̂BGe(D̃|D) =
1

T

T
∑

i=1

PBGe(D̃|D,Gi) (52)

and the probabilitiesPBGe(D̃|D,G) are given by:

PBGe(D̃|D,G) =

N
∏

i=1

P (D̃(i){XN+1,πi}|D(i){XN+1,πi},GF ({XN+1, πi})

P (D̃(i){πi}|D(i){πi},GF (πi))

(53)

In Eq. (53) πi is the parent set of variableXi in G and
GF ({XN+1, πi}) andGF (πi) are full graphs for the corresponding
subsets.

5.2 Predictive probabilities for BGM
The results of the last subsection can be straightforwardly extended
to the dynamic BGM model whenm = m̃ and a one-to-one
correspondence between the observations inD andD̃, e.g. implied
by identical time points, is given. We assume that we have
a sample{[G1, ~V1,K1], . . . , [GT , ~VT ,KT ]} approximately drawn
from the posterior distributionP (G, ~V,K|D) with MCMC. The
BGM analogon of Eq. (52) is then given by:

P̂BGM (D̃|D) =
1

T

T
∑

i=1

PBGM (D̃|D,Gi, ~Vi,Ki) (54)

where the probabilitiesPBGM (D̃|D,G, ~V,K) can be factorised
according to Eq.( 25):

PBGM (D̃|D,G, ~V,K) =
K
∏

k=1

N
∏

i=1

P (D̃(i)(
~V,k),{XN+1,πi}|D(i)(

~V,k),{XN+1,πi},GF ({XN+1, πi})

P (D̃(i)(~V,k),{πi}|D(i)(~V,k),{πi},GF (πi))

(55)
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where D̃(i)(
~V,k),S and D(i)(

~V,k),S are data subsets of̃D(i)
and D(i), respectively, which are restricted to those rows that
correspond to variables inS and to those columns that have
been assigned to componentk by the allocation vector~V. The
probabilities in the numerator and denominator of each factor can
be computed using a modified version of Eq. (46). That is, each

predictive probabilityP := P (D̃(~V,k),{S}|D(~V,k),{S},GF (S))

for the data subset̃D(~V,k),{S} ⊂ D̃ conditional on the subset
D(~V,k),{S} ⊂ D and a full graphGF (S) for then-dimensional sub-
domainS ⊂ {X1, . . . , XN} can be factorised using Eq. (15) of
Geiger and Heckerman (1994):

P = (2π)−
n·m̃k

2 ·

(

v +mk

v +mk + m̃k

)n/2

·
c(n, α+mk)

c(n, α+mk + m̃k)

·det(T
(~V,k),S

D )
α+mk

2 · det(T
(~V,k),S

D,D̃
)−

α+mk+m̃k

2

(56)

whereα andv are hyperparameters that have to be specified,mk

andm̃k are the numbers of observations that are allocated to thek-
th mixture component by~V, c(n, α+mk) andc(n, α+mk + m̃k)

can be computed from Eq. (36).T (~V,k),S

D and T (~V,k),S

D,D̃
can be

computed using Eq. (33) and Eq. (47) after having replacedD

and D̃ by the data subsetsD(~V,k),S and D̃(~V,k),S , m and m̃ by
mk andm̃k, ~µ0 by the subvector~µ0

S consisting of those entries
only corresponding to variables inS, and T0 by the submatrix
TS

0 consisting of those rows and columns only corresponding to
variables inS. We note that the means in Eq. (34) and Eq. (44) and
the covariances in Eq. (35) and Eq. (43) are thenn-dimensional,
that is, restricted to the variables inS. Furthermore,m and m̃
are replaced bymk and m̃k, as the means and covariances are
computed for the subset of observations that are allocated to the
k-th mixture component by~V.

Finally, we note that Eq. (54) can be derived in analogy to
Eq. (52) in the last subsection.
For BGM we get the following expression for the predictive
probabilities:

P (D̃|D) =
∑

K,~V,G

∫

P (D̃|K, ~V,G, ~q)P (K, ~V,G, ~q|D)d~q (57)

and we can use the expansion

P (K, ~V,G, ~q|D) = P (~q|K, ~V,G,D) · P (K, ~V,G|D)

and draw on the fact that

Ψ(K, ~V,G, D̃) =

∫

d~qP (D̃|K, ~V,G, ~q) · P (~q|K, ~V,G,D) (58)

can be calculated analytically. Inserting Eq. (58) in Eq. (57) yields:

P (D̃|D) =
∑

K,~V,G

Ψ(K, ~V,G, D̃) · P (K, ~V,G|D) (59)

which in practice is computed from a sample
{[K1, ~V1,G1], . . . , [KT , ~VT ,GT ]} approximately drawn from

the posterior distributionP (K, ~V,G|D) with MCMC:

P (D̃|D) =
1

T

T
∑

i=1

Ψ(Ki, ~Vi,Gi, D̃) (60)

5.3 Error propagation

The standard deviations of the estimatorŝPBGe(D̃|D) in Eq. (52)

andP̂BGM (D̃|D) in Eq. (54) are given by:

σ
{

P̂BGe(D̃|D)
}

=

(

1

T · (T − 1)

T
∑

i=1

(

PBGe(D̃|D,Gi)− P̂BGe(D̃|D)
)2

)1/2

σ
{

P̂BGM (D̃|D)
}

=

(

1

T · (T − 1)

T
∑

i=1

(

PBGM (D̃|D,Gi, ~Vi,Ki)− P̂BGM (D̃|D)
)2

)1/2

Applying the statistical rules of error propagation (σ(f(x)) =
f ′(x) · σ(x)) for the loge(.) transformation we obtain that
the standard deviations of the logarithmic predictive probability
estimatorsloge(P̂BGe(D̃|D)) and loge(P̂BGM (D̃|D)) are given
by:

σ
{

loge(P̂BGe(D̃|D))
}

=
σ
{

P̂BGe(D̃|D)
}

P̂BGe(D̃|D)

σ
{

loge(P̂BGM (D̃|D))
}

=
σ
{

P̂BGM (D̃|D)
}

P̂BGM (D̃|D)
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