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Response regulator homologues have complementary, light-dependent
functions in the Arabidopsis circadian clock
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Abstract TIMING OF CAB EXPRESSION 1 (TOC1)
functions with CIRCADIAN CLOCK-ASSOCIATED 1
(CCA1) in a transcriptional feedback loop that is
important for the circadian clock in Arabidopsis thaliana
(L.) Heynh. TOC1 and its four paralogues, the Arabid-
opsis PSEUDO-RESPONSE REGULATOR (PRR)
genes, are expressed in an intriguing daily sequence. This
was proposed to form a second feedback loop, similar to
the interlocking clock gene circuits in other taxa. We
show that prr9 and prr5 null mutants have reciprocal
period defects for multiple circadian rhythms, consistent
with subtly altered expression patterns of CCA1 and
TOC1. The period defects are conditional on light
quality and combine additively in double-mutant plants.
Thus PRR9 and PRR5 modulate light input to the cir-
cadian clock but are neither uniquely required for
rhythm generation nor form a linear series of mutual
PRR gene regulation.
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Abbreviations B: blue light Æ CCA1: CIRCADIAN
CLOCK-ASSOCIATED 1 Æ CCR2: COLD AND CIR-
CADIAN-REGULATED 2 Æ DD: constant dark-

ness Æ LD: light:dark Æ PRR: PSEUDO-RESPONSE
REGULATOR Æ R: red light Æ TOC1: TIMING OF
CAB EXPRESSION 1

Introduction

The circadian clocks of diverse organisms generate
robust, 24-h biological rhythms, via gene regulatory
circuits that include interlocking loops of transcrip-
tional negative feedback (Young and Kay 2001). Light
signalling pathways regulate a component(s) of the
feedback loops, entraining the endogenous clock to the
environmental day/night cycle. The plant circadian
clock regulates leaf position and the expression of
many genes, including expression of chlorophyll
a/b-binding protein (CAB) genes that peak in the
mid-morning and COLD AND CIRCADIAN-REGU-
LATED (CCR) genes peaking late in the day. Rhyth-
mic transcription can be monitored in vivo using
bioluminescent luciferase (LUC) reporter genes.
Genetic screens have thus identified Arabidopsis clock
mutants, such as the 21-h-period mutant toc1-1 (re-
viewed in Hayama and Coupland 2003). A regulatory
loop involving TIMING OF CAB EXPRESSION 1
(TOC1) and CIRCADIAN CLOCK-ASSOCIATED 1
(CCA1) is thought to play a central part in generating
circadian rhythms in Arabidopsis (Hayama and
Coupland 2003; Mas et al. 2003). TOC1 and its four
paralogues, the PSEUDO-RESPONSE REGULATOR
(PRR) genes, were separately identified by their
homology to the receiver domain of prokaryotic two-
component signalling systems (Makino et al. 2000;
Strayer et al. 2000). In canonical two-component sys-
tems, an environmental sensor regulates an associated
histidine kinase, which signals to various effector
proteins via a His-Asp phosphorelay mechanism. The
receiver domains of TOC1 and PRR proteins have
substitutions at conserved residues including the
phosphorylated aspartate. PRR transcripts accumulate
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rhythmically in the order PRR9-PRR7-PRR5-PRR3-
TOC1 with peak levels from 2 h (for PRR9) to 10 h
(for TOC1, also known as APRR1) after dawn
(Makino et al. 2000; Matsushika et al. 2000; Strayer et
al. 2000). The sequence of gene expression has been
proposed to result from the serial activation of PRR7-
PRR5-PRR3-TOC1, initiated by PRR9 (Matsushika
et al. 2000). Repression of PRR9 by overexpression of
TOC1 suggested that this linear series might be closed
to form another circadian feedback loop (Makino et al.
2002). We now characterise prr5 and prr9 mutations
and demonstrate that their circadian effects are com-
plementary, light-dependent and inconsistent with the
serial activation of PRR genes.

Materials and methods

Plant material and growth and conditions

All experiments were carried out in the Arabidopsis thaliana (L.)
Heynh. Columbia (Col) ecotype. SALK lines 6280 and 7551 were
generated at the Salk Genomic Analysis Laboratory Institute and
identified using the Insert Watch facility (http://www.nasc.nott.
ac.uk/insertwatch) at the Nottingham Arabidopsis Stock Centre
(NASC, UK). Seeds were obtained from the Arabidopsis Biological
Resource Centre (ABRC, Ohio State University, Columbus, OH,
USA) and NASC. Homozygous mutants were identified from
segregating F3 by PCR amplification of the T-DNA flanking re-
gions. Seedlings were entrained at 22 �C to 12 h light/12 h dark
(LD) under cool-white light, 120 lmol m)2 s)1 for 8 days prior to
measurements except for the etiolated seedlings, which were grown
in darkness for 4 days while entraining to 12 h 18 �C/12 h 24 �C.
Circadian period was measured for luminescence rhythms imaged,
and leaf movement as described by Doyle et al. 2002. Hypocotyl-
growth assays were done as referred to in Doyle et al. (2002).

Constructs

Luciferase constructs reporting the activity of CCA1, CAB2 and
COLD AND CIRCADIAN-REGULATED 2 (CCR2) promoters
(Doyle et al. 2002), were introduced into prr5, prr9 and Col using
Agrobacterium. Multiple independent transformants were analysed
for each gene and genotype.

Results

We selected SALK lines 6280 and 7551 that carried a
T-DNA insertion in the PRR5 or PRR9 gene in the
Columbia-0 background (Col). PRR5 shares the highest
sequence identity with PRR9 (Matsushika et al. 2000).
PCR analysis showed that the T-DNAs were inserted
within the second exon to second intron (data not
shown), consistent with publicly available data (http://
signal.salk.edu/cgi-bin/tdnaexpress). Reverse transcrip-
tion (RT)–PCR assays detected no cognate RNA from
mutant seedlings, when wild types showed strong,
rhythmic expression (data not shown). prr5-1 and prr9-1
are likely null mutations, abbreviated as prr5 and prr9.

We assayed circadian output rhythms and the
expression of clock-associated genes in homozygous prr

mutant seedlings. Figure 1a, b shows that circadian
period relative to Col was 1.0–2.4 h shorter in prr5 and
1.0–1.4 h longer in prr9, for CCA1, CAB2 and CCR2
expression under simulated white (red + blue, RB) light
and for rhythms of leaf movement in white fluorescent
light. The altered period of leaf movement co-segregated
with homozygosity for the prr mutation (data not
shown), indicating that the T-DNA insertions caused
these recessive phenotypes. CCA1 and TOC1 RNA
levels were robustly rhythmic (Fig. 1c), so neither PRR5
nor PRR9 is uniquely required for the expression or
rhythmicity of TOC1. The rising and/or falling phases of
these transcripts were slightly advanced in prr5 com-
pared to Col and slightly delayed in prr9. Peak levels of
TOC1 RNA were lower in prr5 and higher in prr9,
supporting a correlation between period and TOC1
expression levels (Mas et al. 2003). Leaf movements in
prr5;prr9 double mutants remained robustly rhythmic
with a period indistinguishable from Col (Fig. 1a).

Mutants with aberrant light signalling can alter the
circadian period in a light-dependent manner (reviewed
in Hayama and Coupland 2003). We therefore measured
the periods of CCA1 and/or CCR2 expression under 10–
15 lmol photons m)2 s)1 constant red light (R), blue
light (B) or darkness (DD). The prr mutations altered
the period of CCA1 expression in B by 2 h, affected the
period of CCR2 expression in R and B to a lesser extent,
but had no effect on the period of CCA1 expression in R
or of CCR2 expression in DD (Fig. 1a, b). Etiolated prr
seedlings also had periods that differed from Col by only
0.6 h or less. Both prr5 and prr9 seedlings showed mild
long-hypocotyl phenotypes when grown under constant
R or B at a range of fluence rates (Fig. 1d).

Discussion

The opposite period phenotypes of prr5 and prr9 show
that PRR5 and PRR9 are not functionally equivalent,
consistent with the differing phenotypes of plants that
overexpress these genes (Matsushika et al. 2002; Sato
et al. 2002). The period phenotypes were light-depen-
dent, suggestive of a function in light input to the clock.
Strong toc1 mutations abolish circadian rhythms in
conditions lacking blue light (Mas et al. 2003), whereas
PRR5 and PRR9 had their greatest effect in conditions
containing blue light. The opposite period phenotypes of
prr5 and prr9 are not due to opposite effects on general
phototransduction, because both mutants have similar
effects on light-regulated hypocotyl elongation. A phase-
specific mechanism can explain the period phenotypes.
PRR9 is expressed early in the subjective day, when light
treatment advances the circadian phase (Covington et al.
2001). Abrogation of this phase advance in prr9 is
consistent with the long period of prr9 under constant
light (Fig. 1a); the converse applies to prr5 and toc1.

The rhythms of CCR2 expression had consistently
different periods, in multiple transgenic lines, from those
of CAB or CCA1 expression under some conditions. The
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effects of light and prr mutations also differed. Many, if
not all, plant cells maintain a circadian system with a
qualitatively similar molecular mechanism, so the prr
mutations have similar effects on all rhythms. However,
there are quantitative differences among rhythms in
different cell types (Thain et al. 2002; Michael et al. 2003

and references therein). CCR2 is expressed in a different
spatial pattern (for example, in roots) than the other
markers, so CCR2 rhythms reflect a set of slightly dif-
ferent cellular clocks.

The small effects of the mutants on TOC1 RNA levels
and their opposite effects on period suggest that the
PRR genes do not activate each other in a linear daily
sequence that ultimately activates TOC1. Such serial
activation would result in an epistatic genetic interaction
between the prr mutants. The additive interaction that
we observed in prr5;prr9 confirms that PRR5 and PRR9
affect the circadian clock by largely independent mech-
anisms. We conclude that PRR5 and PRR9 participate
in the complex interaction of light signalling with the
circadian clock but are not required for rhythm gener-
ation.
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